

Natural Language Processing is a growing field in computer
science and engineering, related to both theoretical and
applied computational techniques relative to natural language
and the use of language knowledge. This issue of the research
journal “Polibits” presents four contributions concerning
natural language processing. Two of them draw formal
models of two categories of knowledge of language: syntax
and morphology. The other two papers solve practical
computational approaches of language to machine translation
and information extraction.

The paper “Natural Language Syntax Description using
Generative Dependency Grammar” gives a practical solution,
based on a Generative Dependency Grammar (GDG), to
describe natural language syntax. It also presents the features
and what GRAALAN, –declarative computer language in
which GDG are implemented– offers.

The paper “Morpheme based Language Model for Tamil
Part-of-Speech Tagging” presents a POS tagging using a
corpus-based approach by formulating a Language Model
through morpheme components of words Tamil language. An
approach to a language model is also given, in which, in order
to estimate the contribution factors, the authors follow
generalized iterative scaling technique.

In “Modeling a Quite Different Machine Translation using
Lexical Conceptual Structure”, the author outlines the
readability of an Example-Based Machine Translation for any
pair of languages by means of the language-independent
properties of the lexical conceptual structure (LCS), which is
described as a representation of traditional relationships. The
author presents LCS-Based Machine Translation from the
point of view of a complex adaptive system.

In the paper “Named Entity Recognition in Hindi using
Maximum Entropy and Transliteration”, the authors have
explored different features applicable for the Hindi Named
entity recognition (NER) task, as well as incorporated some
gazetteer lists in the system to increase its performance. A
two-phase transliteration methodology is proposed, which is
not only applicable for Hindi, but also for other languages.

Additionally, this issue of “Polibits” contains six regular
papers addressing research of computer science applied to
vision and signal processing, as well as to design of interfaces.
In this way, this journal aims at the purpose of spreading the
vast discipline of computer science and engineering.

A definition of the simple algorithm for triangulation of the
virtual object virtual, as well as an algorithm that allows
visualizing of the cutting triangular net and the calculation of
the dynamics of the net during the cut are presented in the
paper “Visualización 3D de Deformación y Corte de Objetos

Virtuales basada en Descomposición Ortogonal (3D
visualization of deformation and cut of virtual objects based
on orthogonal decomposition)”.

In the paper “An Extended Video Database Model for
Supporting Finer-Grained Multi-Policy and Multi-Level
Access Controls”, the authors present a hybrid video database
model. They also extend the original hierarchical indexing
mechanism to add frames and salient objects at the lowest
granularity level in the video tree with the aim to support
multi-level access control.

In “Multiplicador Electrónico para Encoder Incremental
(Electronic multiplicator for incremental encoder)”, the
design and experiments on simulation of the electronic
multiplicator for incremental encoders are presented, which
purpose is to increment the resolution of the feed back signal
using the same encoder.

The term “Distance Object Learning” as a way of learning
over a computer network or the Internet about real world
entities that are distinguishable from others is used in the
paper “Distance Online Learning and Evaluation
Framework”. The Distance Object Learning and Evaluation
(DOLE) system concept is presented that uses standards for
Learning Object Metadata (LOM), and it is based in part on an
earlier version of E-learning Assessment System for Young
learners (EASY).

The paper “Computadoras de Bolsillo como una
Alternativa para el Control de Servomotores en Robótica
(PDA Computers as an Alternative for Servo Motors Control
in Robotics)” proposes an implementation which is related to
hardware interface, namely, to the usage of the specialized
microcontroller that connects PDA with the servo motor using
serial port of the PDA.

In “Diseño de un Coprocesador Matemático de Precisión
Simple usando el Spartan 3E (Design of Mathematical
Coprocessor of Simple Precision using Spartan 3E)” the
authors show how an implementation of the mathematical
coprocessor using VHDL, for its further implementation in
FPGA.

Gerardo Sierra

Head of the Group of Linguistic Engineering,
Institute of Engineering,

National Autonomous University of Mexico

Editorial

3 Polibits (38) 2008

4Polibits (38) 2008

Abstract— The paper presents a practical solution to describe
natural language syntax. This solution is based on a Generative
Dependency Grammar (GDG). A theoretical definition of these
grammars and some of their proprieties is given. GDG are
implemented in a declarative computer language GRAALAN
(Grammar Abstract Language). The paper shortly present the
features of GRAALAN and, after that, a more detailed
implementation of natural language syntax description is given.
GRAALAN offers for natural language syntactic description
some strong features that respond to the following requests: a
compact description, the possibility to express the syntax and the
agreement and to specify the errors met in a text. The description
has also the feature of reversibility. The paper presents some
conclusions concerning the using of GRAALAN to describe the
syntax (among others natural language features).

Index Terms—Dependency grammar, natural language syntax.

I. INTRODUCTION
HE approach of different linguistic chapters in a unified
manner was realized so far in many complex systems like

EUROTRA [1], EAGLES [2], ROSETTA [20]. These large
projects did not produce many successful implementations,
but they are very important at least from theoretical point of
view. One of the major drawbacks (among others) was the
lack of unity among different linguistic chapters approach.
Paradoxically, this lack of unity has grown for the worse due
to the (successful) standardization effort of the different
linguistic chapter representation, because the extremely useful
approach of each individual section was not sufficiently
correlated with the approach of other linguistic sections [11].
The language GRAALAN (Grammar Abstract Language) that
will be very shortly presented in section II of this paper try to
integrate many chapters of linguistic description and among
these, the syntactic description of a natural language.

A lot of language models and language grammar types were
proposed trying to solve the natural language description
problem. There are three of the linguistic models that seem to
be more successful and used in some applications [18]: TAG –
Tree Adjoining Grammar [16], HPSG – Head-Driven Phrase
Structure Grammar [17] and LFG – Lexical Functional
Grammar [19].

During the last years another idea was more and more
analyzed and studied: the dependency. Actually, it is quite an

Manuscript received July 10, 2008. Manuscript accepted for publication
October 20, 2008.

This work was supported in part by SOFTWIN SRL, Bucharest, Romania.
Stefan Diaconescu is with the SOFTWIN SRL, Bucharest, Romania (e-

mail: sdiaconescu@softwin.ro).

old idea – usually [21] is used as reference but the dependency
idea in the grammar is millennial – but new valences and
strength became attractive. The present paper is based on
some researches that try to make a connection between two
directions that seemed to be almost irreconcilable till now: the
generative approach and the dependency approach. We
present how this connection was done and implemented in the
syntactic section of a GRAALAN (section II) in order to find
a more adequate language model that could be used in natural
language processing and that have the potential to produce
many and better applications.

Some theoretical notions that are used to build
GRAALAN are presented in the section III: DT - Dependency
Trees, AVT - Attribute Value Trees, GDG - Generative
Dependency Grammar and GDGF - Generative Dependency
Grammar with Features. In section IV, it is presented how
GRAALAN is used to describe the syntax under the form of
rule sequence that indicates: the syntactic elements, the
dependencies between these elements and the agreement
between these elements. Finally (section V) some conclusions
and the stage of current implementations are presented.

II. GRAALAN: GRAMMAR ABSTRACT LANGUAGE
GRAALAN is a language (in fact, a meta-language) that

allows the description of a natural language and a
correspondence between two natural languages. It contains
some features that can be used to describe different natural
language chapters (sections):

a) Alphabet Section defines the codes of the signs used to
represent and describe the natural language. In this section the
following information can be put: phonetic alphabet
description (using, for example IPA – International Phonetic
Alphabet [13]), normal alphabet and special characters (using.
for example, UNICODE [14]), groups of characters
(diphthongs or triphthongs, etc.) that contain the
correspondences between some sequences of normal alphabet
and phonetic alphabet, alphabetic classes (vowel class,
consonant class, etc.). This section can describe also some
special notation systems like those used by Japanese or
Chinese languages.

b) Lexicon Section defines morphemes (roots, prefixes,
suffixes, prefixoids, suffixoids, etc.), words (lemmas, some
inflected forms of a word that accompanies the lemmas in an
ordinary dictionary, for example, plural form of a noun),
wordforms (some inflected form of another word that usually
appears in a dictionary), multiword expression (MWE are
groups of words represented as a DT - Dependency Tree),

Natural Language Syntax Description
using Generative Dependency Grammar

Ştefan Diaconescu

T

5 Polibits (38) 2008

morphologic analytic structures, some typical syntactic
structures (taken from the syntactic description), etc. For each
lexicon entry some information belonging to the following
types are present: semantic information (gloss, synonyms,
antonyms, paronyms, hipernyms, hyponyms, connotations,
homonyms, meronyms, etc.), etymology (original language,
original form, transliteration of the original form),
syllabification (euphonic, phonetic and morphologic),
morphology (inflection situation, inflection rule identification,
and segmentation), etc.

c) Syllabification Rules Section defines the syllabification
rules for: euphonic syllabification (when the word is written
with the normal or special alphabet), phonetic syllabification
(when the word is written with the phonetic alphabet),
morphologic syllabification (that respects the morphologic
structure of the word). The elements of a word “separated” by
syllabification (or not) are: the normal alphabet characters,
groups (diphthongs, triphthongs, etc.) described in Alphabet
Section (phonetic groups), some special characters, other
constitutive elements (morphemes) described in Lexicon
Section (morphologic groups).

d) Morphology Section defines morphologic categories and
values. It is in fact an AVT - Attribute Value Tree (see section
III.B), where attribute nodes are morphologic categories and
value nodes are morphologic category values. Some
information is attached with each type of node. For example,
information attached to the attribute note is: the category
name, the abbreviation of the category name, the indication if
the category is inflected or not, (eventually) the name of a
procedural program. Information attached to the attribute
values are: the category value name, the abbreviation of the
category value name, indication if it belongs to a lemma (or
not), indication if it belongs to a lexicon entry (or not),
(eventually) the name of a procedural program.

e) Inflection Rules Section defines the rules that can be used
to generate the inflected forms. Lemma (from the lexicon)
indicates a Compound rule. A compound rule is a list of basic
rules. A basic rule contains an AVT where each leaf has one
or more associated elementary inflection rules. An elementary
inflection rule contains: a condition (logical expression) that
indicates when the transformation sequence must be used, a
transformation sequence (insert, delete, replace words or
characters) acting on normal alphabet, a transformation
sequence (insert, delete, replace words or characters) acting on
phonetic alphabet form, an AVT for analytic forms, relations
in a DT (dependency tree, see section III.A) for analytic
forms.

f) Inflection Forms Section defines the inflected forms of
the language. It contains an entry for an inflected form. An
entry contains: the inflected form written using the normal
alphabet, the inflected form written using the phonetic
alphabet, the reference of the word in the lexicon whose
inflected form is the current entry, the characterizing of the
inflection situation (i.e., an AVT with lexical categories and
lexical categories values), how the inflected form is syllabified

in different situations: euphonic, phonetic, morphologic and at
the end of the line (hyphenation).

g) Syntax Section defines the syntax rules (this section will
be detailed in the following sections of the paper).

h) Bilingual Correspondences Section defines the
correspondences between two languages for MWE (Multi
Word Expression) correspondences [7] (it contains
transformation rules based on dependency tree form of MWE,
where nodes can be invariable elements, partial variable
elements, total variable elements), word correspondences
(particular cases of the MWE correspondences where both
MWEs have only one word), syntactic structure
correspondences (a particular case of MWE correspondences
where the nodes can be non-terminals), morphologic analytic
structure correspondences (a particular case of MWE where
the correspondences is established between analytic inflection
forms), morphologic sub-tree correspondences (a particular
case of MWE too, that expresses the correspondences between
a source morphologic sub-tree and a target morphologic sub-
tree).

III. GRAALAN THEORETICAL BACKGROUND

A. Dependency Tree
A generative dependency tree [3] is a 6-tuple DT = {N, T, P,

A, SR, CR} where:
- N - is the set of non-terminals n: n (i1, i2, …),

ij∈SR
- T - is the set of the terminals t: t(i1, i2, …), ij∈SR
- P - is the set of pseudo-terminals p: p (i1, i2, …) ,

ij∈SR
- A - is the set of procedural actions a: a(i1, i2, …) ,

ij∈SR
- SR - is the set of subordinate relations sr: sr(i1),

i1∈N ∪ T ∪ P ∪ A ∪ CR
- CR - is the set of the coordinate relations cr:

cr(f1, f2,… / s1, s2, …), fi ∈N ∪ T ∪ P ∪ A ∪ CR
, si∈SR (f1, f2,… are named fixed entry and s1,
s2, … are named supplementary entry).

The non-terminals N are syntactic categories that can be

described having a name and a structure.
The terminals T are words that can be found in the lexicon

or can be obtained by applying some flexional rules on words
from the lexicon.

The pseudo-terminals P are non-terminals that contain only
terminals. When we will describe a dependency tree or a
grammar we will not cover all the words from the lexicon
because in this case the number of rules from the grammar can
be too big. So, we can say that some non-terminals that we
name pseudo-terminals (for example, some nouns or some
verbs) will never be described in the grammar, but they are
found in the lexicon.

The procedural actions (or “actions”) A are the set of the
routines that can be used to represent a certain portion of the
text that we analyze. For example, a number represented like a
sequence of digits or a mathematical formula or even an image

6Polibits (38) 2008

Ştefan Diaconescu

with a certain significance that appear in a text can be
“replaced” in grammars or dependency trees by a certain
procedural action.

The subordinate relations SR are relations between a
governor and a subordinate from the point of view of syntactic
role in a phrase (for example the relation between a verb and a
complement).

The coordinate relation CR are relations between two or
many (but usually two) syntactic parts of a phrase, for
example, the relation between “read” and “write” in the
phrase “I read and write.”. The coordinated elements are
represented by the fixed entries. A coordinate relation can also
be a governor for the elements that came eventually on its
supplementary inputs (that means that the set of coordinated
elements form a governor for the elements that come on the
supplementary inputs).

A dependency tree can be represented using the graphical
symbols from Fig. 1.

Fig. 1. Graphical DT symbols.

TABLE I.

LINKS IN A DEPENDENCY TREE
Link target Link

source NTPA GR CR
(supp.
entry)

CR
(fixed
entry)

None

NTPA 1 2 7
GR 3 6
CR 4 5 8
None 9 10

The conditions respected by the links in a dependency

tree are represented in Table I (there are 10 allowed situations)
where we noted:

- NTPA: Non terminal (N) or Terminal (T) or Pseudo
terminal (P) or Action (A).

- GR: governor/subordinate relation;
- CR: coordinates relation.
In a graphical representation:

- NTPA has maximum one input and maximum one
output;

- GR has one input and one output;
- CR has maximum one output, zero, one or many

supplementary input and a fixed number of fixed entry (we
will consider only two fixed entry).

Fig. 2. Example of dependency tree.

We will consider also that the dependency tree is

connected. As we can see, in this case, only one NTPA or one
coordinate relation can have not output. This NTPA or
coordinate relation will be named head.

The dependency trees will be used to define generative
dependency grammar (see section III.C) and generative
dependency grammar with features (see section III.D).

B. Attribute Value Tree
An attribute value tree (AVT) [4] [9] is used to describe

morphologic or syntactic structures. It is in fact a list of
attributes, each attribute having one or many values and each
attribute value having associated one or many attributes. It can
be defined as follows, using EBNF - Extended Backus-Naur
Form from [22] without capital letter / lower case letter
regular expression distinction:

[1] avt ::= ('{' S? label ':' S? attribute+ S? '}') | ('{' S? label S?

'}') | ('{' S? attribute+ '}') | (attribute+)

“We”

@r1@

“provide”

@r2@

“advice”

@r2@

“practical”

@r2@

“for”

@r5@

1 2

@r6@

“and”

“system” “admin”

@r2@

“group”

@r8@

“working”

<......>

"......"

Non-terminal

Terminal

%......% Pseudo-terminal

#......# Action (procedure)

@...@ Governor /
Subordinate relation

@...@

1 2
Coordinate relation

Link

7 Polibits (38) 2008

Natural Language Syntax Description using Generative Dependency Grammar

[2] attribute ::= '[' S? <attribute content> S? ']'
[3] <attribute content> ::= (label ':' S? featureContent) |

featureContent | label
[4] featureContent ::= attributeName S? '=' S?

attributeValueList
[5] attributeValueList ::= attributeValueElement (S? ',' S?

attributeValueElement)*
[6] attributeValueElement ::= attributeValueName (S? avt)*
[7] attributeValueName ::= label (S label)*
[8] label ::= labelChar (label)*
[9] labelChar ::= '_' | '-' | '.' | 'A' | 'B' | 'C' | 'D' | 'E' | 'F' | 'G' | 'H' |

'I' | 'J' | 'K' | 'L' | 'M' | 'N' | 'O' | 'P' | 'Q' | 'R' | 'S' | 'T' | 'U' | 'V'
| 'W' | 'X' | 'Y' | 'Z' | 'a' | 'b' | 'c' | 'd' | 'e' | 'f' | 'g' | 'h' | 'i' | 'j' | 'k'
| 'l' | 'm' | 'n' | 'o' | 'p' | 'q' | 'r' | 's' | 't' | 'u' | 'v' | 'w' | 'x' | 'y' | 'z' |
'0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

[10] S ::= (#x20 | #x9 | #xD | #xA)+

Here S is any sequences of space, new line, carriage
return or line feed characters.

We can see that in the description of an AVT we can use
some labels that define some sub trees: labels for attributes
lists (rule [1]) and labels for attribute content (rule [3]). These
labels can be used in others parts of the tree and in this
manner the tree is represented more compact.

A more formal definition of an AVT is given in [9]. The
AVTs have different useful properties like: paths in the AVT,
EC (Exclusive Combinations) in the AVT, equivalence, well
formed AVT, ordering, intersection, difference, union,
factoring, normalization, unifiability, unification. Among
these properties, unifiability and the unification are the most
important. They are used in the generation process for
generative dependency grammar with features (see section
III.D).

C. Generative Dependency Grammar
A generative dependency grammar is an 8-tuple GDG =

{N, T, P, A, SR, CR, nt0, R} where:
- N, T, P, A, SR, CR are defined like in section III.A.
- nt0 - belongs to N and is named root symbol.

- R - is the set of numbered rules of the form (i) ni ::=(pi,
qi), ni ∈ N, pi is a sequence of elements from N ∪ T ∪ P
∪ A, qi is a dependency tree having nodes from pi and
oriented links (relations) from SR ∪ CR.

In a GDG we can make generation that will build in the

same time surface texts and dependency trees.
We give in the following an example of a grammar that can

generate a phrase like:
“We provide practical advice for system and working group

administrators.”

(1) <phrase> ::= (<nominal group> <verbal group>,

<nominal group>(r1 (<verbal group>())))
(2) <nominal group> ::= (“we”, “we”())
(3) <verbal group> ::= (<verb> <complement>

<complement’>,
<verb>(r2(<complement>()), r3(<complement’>())))

(4) <complement> ::= (<attribute> <noun>,
<noun>(r4(<attribute>())))

(5) <complement> ::= (“for” <coordination>, “for”(
<coordination>()))

(6) <coordination> ::= (<member> “and” <member’>,
r5(<member>(), <member’>() / r6(“and”())))

(7) <member> ::= (<noun>, <noun>())
(8) <member> ::= (<attribute> <noun>, <noun>(r7(

<attribute>())))
(9) <attribute> ::= (<attribute> <noun>,<noun>(r8(

<attribute>())))
(10) <attribute> ::= (<noun>, <noun>())
(11) <attribute> ::= (<adjective>, <adjective>())
(12) <attribute> ::= (“practical”, “practical”())
(13) <verb> ::= (“provide”, “provide”())
(14) <noun> ::= (“advice”, “advice”())
(15) <noun> ::= (“system”, “system”())
(16) <noun> ::= (“administrator”, “administrator”())
(17) <noun> ::= (“group”, “group” ())
(18) <adjective> ::= (“working”, “working”())

Using this grammar we can generate the surface text as
follows:

(19)(1, 2) <phrase> ::= (“we” <verbal group>,

“we”(r1(<verbal group>())))
(20)(19,3) <phrase> ::= (“we” <verb> <complement>

<complement’>,
“we”(r1(<verb> (r2(<complement>()),
 r3 (<complement’>()))))

(21)(20,13) <phrase> ::= (“we” “provide” <complement>
<complement’>,
“we”(r1(“provide”(r2(<complement>()),
r3(<complement’>()))))

(22)(21,4) <phrase> ::= (“we” “provide” <attribute> <noun>
<complement’>,
“we”(r1(“provide”(r2(<noun>(r4(<attribute>()))),
r3(<complement’>()))))

(23)(22,5) <phrase> ::= (“we” “provide” <attribute> <noun>
“for” <coordination>,
“we”(r1(“provide”(r2(<noun>(r4(<attribute>()))),
r3(“for”(<coordination>())))))

(24)(23,12) <phrase> ::= (“we” “provide” “practical <noun>
“for” <coordination>,
“we”(r1(“provide”(r2(<noun>(r4(“practical”()))),
r3(“for”(<coordination> ())))))

(25)(24,14) <phrase> ::= (“we” “provide” “practical”
“advice” “for” <coordination>,
“we”(r1(“provide”(r2(“advice”(r4(“practical”()))),
r3(“for”(<coordination> ())))))

(26)(25,6) <phrase> ::= (“we” “provide” “practical” “advice”
“for” <member> “and” <member’>,
“we”(r1(“provide”(r2(“advice”(r4(“practical”()))),
r3(“for”(r5 (<member>(),
<member’>() / r6(“and”())))))))

(27)(26,7) <phrase> ::= (“we” “provide” “practical” “advice”
“for” <noun> “and” <member’>,
“we”(r1(“provide”(r2(“advice”(r4(“practical”()))),
r3(“for”(r5 (<noun>(),

8Polibits (38) 2008

Ştefan Diaconescu

<member’>() / r6(“and” ())))))))
(28)(27,15) <phrase> ::= (“we” “provide” “practical”

“advice” “for” “system” “and” <member’>,
“we”(r1(“provide”(r2(“advice”(r4(“practical”()))),
r3(“for”(r5 (“system”(),
<member’>() / r6(“and”())))))))

(29)(28,8) <phrase> ::= (“we” “provide” “practical” “advice”
“for” “system” “and” <attribute> <noun>,
“we”(r1(“provide”(r2(“advice”(r4(“practical”()))),
r3(“for”(r5(“system”(),
<noun>(r7(<attribute>())) / r6(“and”())))))))

(30)(29,16) <phrase> ::= (“we” “provide” “practical”
“advice” “for” “system” “and” <attribute>
“administrator”,
“we”(r1(“provide”(r2(“advice”(r4(“practical”()))),
r3(“for”(r5(“system”(),
“administrator”(r7(<attribute>())) / r6(“and”())))))))

(31)(29,9) <phrase> ::= (“we” “provide” “practical” “advice”
“for” “system” “and” <attribute> <noun> “administrator”,
“we”(r1(“provide”(r2(“advice”(r4(“practical”()))),
r3(“for”(r5(“system”(),
“administrator”(r7(<noun>(r8(<attribute>())))) / r6(
“and”())))))))

(32)(31,17) <phrase> ::= (“we” “provide” “practical”
“advice” “for” “system” “and” <attribute> “group”
“administrator”,
“we”(r1(“provide”(r2(“advice”(r4(“practical”()))),
r3(“for”(r5(“system”(),
“administrator”(r7(“group”(r8(<attribute>())))) / r6(
“and”())))))))

(33)(32,11) <phrase> ::= (“we” “provide” “practical”
“advice” “for” “system” “and” <adjective> “group”
“administrator”,
“we”(r1(“provide”(r2(“advice”(r4(“practical”()))),
r3(“for”(r5(“system”(),
“administrator”(r7(“group”(r8(<adjective>())))) / r6(
“and”())))))))

(34)(33,18) <phrase> ::= (“we” “provide” “practical”
“advice” “for” “system” “and” “working” “group”
“administrator”,
“we”(r1(“provide”(r2(“advice”(r4(“practical”()))),
r3(“for”(r5(“system”(),
“administrator”(r7(“group”(r8(“working”())))) / r6(
“and”())))))))

The final production we obtained contains in the left side of

the right side the surface text and in the right side of the right
side the dependency tree (represented in Fig. 2).

The GDG allows obtaining a structure from an unstructured
text. This structure can be used in different purposes, for
example in translation process, in defining correspondences
between two languages [7].

D. General Dependency Grammar with Features
A GDG with feature structure is a GDG where each ntpa

can have associated an AVT. The AVT associated with the
non-terminal from the left side of the rules have always only
indexed attributes.

Example
Let us have the next phrase in Romanian language: “Ploile

(the rains) văratice (of summer) sunt (are) călduţe
(lukewarm)” that means “The summer rains are lukewarm”.
We will not use all the grammatical categories involved in the
analysis of this phrase but only few as an illustration.

Usually, the phrase to be analyzed is first of all annotated
i.e. each word will have attached his lemma and a particular
AVT (that have only one value for each attribute). Each word
can have many interpretations. For example “sunt” can
represent the third person plural (are) or the first person
singular (am). Though, for the sake of simplicity, we will
consider only one interpretation for each word.

The annotated phrase will be:
“Ploile” ploaia [class = noun] [gender = feminine] [number

= plural] “văratice” văratic [class = adjective] [gender =
feminine] [number = plural] “sunt” (a) fi [class = verb]
[person: III] [number = plural] [mode = indicative] [voice =
active] [time = present] “călduţe” călduţ [class = adjective]
[gender = feminine] [number = plural]

We marked the lemmas using italics.
A GDG with features that can generate this phrase can be as

follows:
(1) <phrase> ::= (<nominal group> [gender = masculine,

feminine, neuter] [number = singular, plural] [person = I,
II, III] <compound nominal predicate> [gender =
masculine, feminine, neuter] [number = singular, plural]
[person = I, II, III], <nominal group>(@r1@(
<compound nominal predicate> ())))

(2) <nominal group> [gender = masculine, feminine, neuter]
[number = singular, plural] [person = I, II, III] ::=
(%noun% [class = noun] [gender = masculine, feminine,
neuter] [number = singular, plural] %adjective% [class =
adjective] [gender = masculine, feminine, neuter]
[number = singular, plural],
%noun%(@r2@(%adjective% ())))

(3) <compound nominal predicate>[gender = masculine,
feminine, neuter] [number = singular, plural] [person = I,
II, III] ::= (%verb% [class = verb] [gender = masculine,
feminine, neuter] [number = singular, plural] [mode =
indicative] [voice = active] [time = present, future,
imperfect past] %adjective% [class = adjective] [gender =
masculine, feminine, neuter] [number = singular, plural],
%verb%(@r3@(%adjective% ())))

As we can see, we used pseudo terminals for nouns, verbs,

adjectives, so this grammar can generate a set of phrases.

IV. NATURAL LANGUAGE SYNTAX DESCRIPTION IN GRAALAN

A. General Structure
The description of the syntax in GRAALAN [8] [10] will

use GDG and AVT presented in section III. The language
where we are describing the syntax must respect the following
conditions:

a) Syntax: The description language will allow the
description in a detailed and compact form of the manner to

9 Polibits (38) 2008

Natural Language Syntax Description using Generative Dependency Grammar

combine words in phrases respecting the rules of a natural
language grammar.

b) Dependencies: We accept here that the dependency
aspects are reduced to the mode different parts of a phrase are
in relation one another (coordinate and governor/subordinate
relations).

c) Agreement: By agreement [5] we will understand the
mode different part of speech “match” one another when they
are in certain dependency relations from the point of view of
the values of different morphologic or syntactic categories.

d) Errors: The natural language syntax description must
allow indicating the errors (at least the most frequent ones)
that can be found in phrases. The bad built phrases must be
recognized (in a certain measure) and marked as being
incorrect.

e) Reversibility: By reversibility we will understand the
property of the description language to be used to convert a
source (surface) text in a deep structure (the dependency tree,
in our case) and to convert the deep structure into the surface
text.

We will give here an informal definition of natural
language syntax description in GRAALAN. A more detailed
definition of natural language syntax description in
GRAALAN is given in the next sections.

A GRAALAN syntax description is a sequence of labeled
rules. A rule has two parts: the left part and the right part. The
left part of a rule contains a non terminal and an AVT. The
AVT contains syntactic / morphologic categories with their
values. The right part of a rule contains one or many
Alternants. An alternant is formed by a set of subsections: the
syntactic subsection, the dependency subsection and the
agreement subsection.

a) The syntactic subsection is a sequence of (eventually
labeled) one or many NTPAs. Each NTPA can have
associated information about how this NTPA is linked with
others NTPA by certain relations from the dependency
subsection (these relations are indicated by their labels in the
dependency subsection). There are three lists concerning the
relations: coordinated list (CL), subordinated list (SL) and
government list (GL).

Each NTPA can have associated an AVT describing
syntactic / morphologic categories with their values.

b) The dependency subsection contains the description of
the relations between the NTPA from the syntactic subsection
(referred by their labels). There are two types of relations:

The subordinate relation SR is a relation between two N, T,
P, A, or a coordinate relation CR. One of the two elements is
considered to be the governor (that governs by SR) and the
other the subordinate (that is governed by SR).

The coordinate relation CR is a relation between (usually)
two N, T, P, A (that are said to be coordinated by CR), and
eventually one or many SR (by which the CR is considered to
be a governor for others N, T, P, A, or CR).

c) The agreement subsection contains a list of agreement
rules. An agreement rule is a conditional expression expressed
between the categories values of the NTPAs from the

syntactic subsection. It can indicate some actions like error
messages or how the analyze will be continued after an
agreement error is found.

Fig. 3. Syntax rule elements

B. Graalan Syntactic Section Header
The syntactic section of a GRAALAN description is a

sequence of rules preceded by a header. The description of the
header in EBNF is the following:

[1] syntaxSection ::= 'Section' S 'syntax' S sectionHeader

syntax S 'end' S 'of' S 'section'
[2] sectionHeader ::= (sourceLanguage,

exploitationLanguage, sourceDirection,
exploitationDirection)

A header is formed by elements that refer the source

language and exploitation language.

[3] S ::= (#x20 | #x9 | #xD | #xA)+

Here S is any sequences of spaces, new line, carriage
return or line feed characters.

[4] sourceLanguage ::= 'Source' S 'language' S language S
[5] exploitationLanguage ::= 'Exploitation' S 'language' S

language S
[6] sourceDirection ::= 'Source' S 'direction' S ('left' | 'right')

- agreement
rules with
condition
expressions and
actions

Agr.
sub-
section

Alt. 2

Alt. 3

Alt. 1

Synt.
sub-
section

Dep.
sub-
section

<N> CL/SL/GL
[AVT]
“T” CL/SL/GL
[AVT]
%P% CL/SL/GL
[AVT]
#A# CL/SL/GL
[AVT]
@CR @
CL/SL/GL
@GR@ SL/GL

Alternant
sequence

Grammar Rule

Right part Left part

=> <non
terminal>
[AVT]

10Polibits (38) 2008

Ştefan Diaconescu

[7] exploitationDirection ::= 'Exploitation' S 'direction' S ('left'
|'right')

[8] language ::= ('RUM' | 'FRA' | 'FRA' | 'SPA' | 'RUS, ...')

We understand by direction the mode to scan the source
text: right - the scan is done from left to right; left - the scan is
done from right to left. The language is indicated according to
[15].

[9] syntax ::= (rule S)+
[10] rule ::= 'Rule' S label ':' S '<' S? name S? '>' S? attribute*

S? '::=' S? (('Alternant' S label ':' S? alternantContent)+ |
('Alternant' S alternantContent))

The alternant labels must be unique in the rule.

[11] name ::= label (S label)*
[12] label ::= labelChar (label)*
[13] labelChar ::= '_' | '-' | '.' | 'A' | 'B' | 'C' | 'D' | 'E' | 'F' | 'G' | 'H'

| 'I' | 'J' | 'K' | 'L' | 'M' | 'N' | 'O' | 'P' | 'Q' | 'R' | 'S' | 'T' | 'U' |
'V' | 'W' | 'X' | 'Y' | 'Z' | 'a' | 'b' | 'c' | 'd' | 'e' | 'f' | 'g' | 'h' | 'i' | 'j'
| 'k' | 'l' | 'm' | 'n' | 'o' | 'p' | 'q' | 'r' | 's' | 't' | 'u' | 'v' | 'w' | 'x' | 'y' |
'z' | '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

[14] alternantContent ::= (syntacticSubsection
((dependencySubsection agreementSubsection?) |
agreementSubsection)?)

An alternant can contain the three types of subsection

(syntactic, dependency and agreement) in different
combinations.

C. Syntactic Subsection
The syntactic subsection of a GRAALAN syntax rule

contains information about a set of NTPAs that must be found
in the analyzed / generated source text, in the corresponding
sequence. The description of the syntactic subsection in EBNF
is the following:

[15] syntacticSubsection ::= 'Syntax' S ((notRelationedNTPA

S tpaRelationalList*)+) | ((notRelationedNTPA S
nRelationalList*)+)

[16] notRelationedNTPA ::= (label ':' S?)? (('<' S? name S?
'>') | ('"' terminal '"') | ('%' S? name S? '%') | ('#' S?
label S? '#')) S attribute* (S ntpaBehaviour)*

[17] terminal ::= char (terminal)*
[18] char ::= &label; | &code;|...

Here char can be &label; or &code; or any character
defined in GRAALAN Alphabet section (not described in this
paper).

[19] code ::= '#x' hexaString
[20] hexaString ::= hexaChar (hexaString)*
[21] hexaChar ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' | 'a' |

'b' | 'c' | 'd' | 'e' | 'f' | 'A' | 'B' | 'C' | 'D' | 'E' | 'F'
[22] ntpaBehaviour ::= ntpaBehaviourElement (S

ntpaBehaviourElement)*

[23] ntpaBehaviourElement ::= '!' | (('OK' | 'KO') S? '=' S? (
'OK' | 'KO')) | ('Message' S? = S? label) | ('Context' S?
= S? '(' S? label (S label)* S? ')'))

Each element from ntpaBehaviourElement that

characterises the NTPA behavior can appear only once in an
ntpaBehaviour.

An NTPA that is head can have associated a feature named
“cut” and indicated by “!”. This means that the head loses the
characteristic of head. The corresponding NTPA will not have
relations with other NTPAs. The grammar must be written in
order to obtain a connected dependency tree. One alternant
will have only one head. When we use another rule to
substitute a non terminal in the current alternant, the different
links of the substituted non-terminal will be applied to the
head of the used rule.

The others elements that appear in ntpaBehaviourElement
form the error sequence. In such a sequence the Message is
mandatory. The error message itself is indicated by a label
that defines the error text in another GRAALAN section (the
GRAALAN Message Section that is not presented in this
paper).

The condition ('OK' | 'KO') S? '=' S? ('OK' | 'KO') indicates
the error triggering. The left of “=” indicates how NTPA
treatment is terminated and the right side of “=” indicates the
error condition, see Table II.

TABLE II

ERROR TRIGGERING FOR A NTPA
How NTPA treatment
is terminated

Error
condition

Continue as it
was not an error

OK OK Yes (i)
OK KO No
KO KO Yes(ii)
KO OK No

The two cases when the treatment is continued as it were

not an error has the following significance:
i) We found an error but this error is described as it was

correct.
Example

(A simplified description.)

<imperative phrase>::=

<vocative nominal group> "," <imperative verbal group>
"!"|

<vocative nominal group> <imperative verbal group >"!"

The first alternant corresponds to a phrase of the form (in

Romanian):
"Domnilor, vorbiţi mai încet !" (Gentlemen, shut up!)

(with a comma after the vocative).
The second alternant corresponds to a phrase of the form

(in Romanian):
"Domnilor vorbiţi mai încet!" (Gentlemen shut up!)

(without a comma after the vocative, therefore incorrect).
Though we have an error, the sense remains clear.

11 Polibits (38) 2008

Natural Language Syntax Description using Generative Dependency Grammar

During the analysis of this incorrect phrase, the second
alternant will return an OK value after the terminal "!". If we
attach in the second alternant an error condition we will can
indicated the error apparition:

Rule R1: <imperative phrase>::=

Alternant A1:
Syntax

Label1:<vocative nominal group>
Coordinate Label5(1)

Label2: ","!
Label3: <imperative verbal group>

Coordinate Label5(2)
Label4: “!”!

Dependencies
Label5: @vocative relation@(2)

Alternant A2:
Syntax

Label1: <vocative nominal group>
Coordinate Label4(1)

Label2: <imperative verbal group>
OK = OK Message =

ErrorMessage
Coordinate Label4(2)

Label3: "!"!
Dependencies

Label4: @vocative relation@(2)

ii) There are situations when an NTPA must return OK but,

if it returns KO, we have an error that must be identified as it
is. Let us suppose a grammar fragment that must recognize
phrases formed by a verbal group or by two verbal groups
linked by “and”.
(A simplified description.)

<phrase>::= <nominal group> <verbal group>"."|

<nominal group><verbal group> "and"<verbal group>"."

In such a grammar, after an “and” was detected, a <verbal
group> must be found. We can attach to the non terminal
<verbal group> that is written after “and” an error sequence
that must be triggered to KO return by this non terminal
(giving an error message). A phrase like “He came and.” must
produce this error message

The (simplified) description could be, for example:

Rule R1: <phrase>::=

Alternant A1: <nominal group> <verbal group> "."
Alternant A2: <nominal group> <verbal group> "and"

<verbal group> KO = OK Message =
Error101

"."

A more detailed description:

Rule R1 <phrase>::=
Alternant A1:

Syntax

Label1: <nominal group> Governor Label4
Label2: <verbal group> Subordinate Label4
Label3: "."!

Dependencies
Label4: @nominal / verbal relation@

Alternant A2:
Syntax

Label1: <nominal group> Governor Label7
Label2: <verbal group> Coordinate

Label6(1)
Label3: "and"!
Label4: <verbal group>

KO = OK Message = Error101
Coordinate Label6(2)

Label5 "."!
Dependencies

Label6: @”and” coordination@(2)
Subordinate Label7

Label7: @nominal / verbal relation@

[24] tpaRelationalList ::= ('Governor' S labelList) | (

'Subordinate' S labelList) | ('Coordinate' label S? '(' S? (
'1’ | '2' S?) ')')

[25] nRelationalList ::= ('Governor' S labelList) | (
'Subordinate' S labelList) | ('Coordinate' label S? '(' S? (
'1’ | '2' S?) ')') | ('External' labelList)

[26] labelList ::= label (S label)*

A NTPA with relations is an NTPA that is linked with other
NTPAs by relations (governor, subordinate, coordinate).

The Subordinate list of an NTPA can contain only the label
of a Subordinate relation from the Dependency subsection.

The Coordinate list of an NTPA can contain only one label
of a coordinate relation (that will be referred on a fixed entry)
from Dependency subsection.

The Governor list of an NTPA can contain one or many
labels of subordinate relations from the Dependency
subsection.

For the same NTPA: the Subordinate list and Governor list
can coexist, the Governor list and the Coordinate list can
coexist, and the Subordinate list and the Coordinate list are
exclusive.

The External list of can appear only for a nonterminal. It
refers relations from Dependency subsection that appear wit
the attribute Definition or Reference [6]. We must respect the
discipline that, in the process of applying the rules (the
generation of a new rule from two rules) always the external
“definition” must appear before the corresponding external
“reference”. An external definition can appear only in a
relational list of a non terminal, because only a non terminal
can carry them further to someone that needs it.

D. Dependency Subsection
The dependency subsection of an alternant contains

information about the relations that are defined between the
NTPAs from the syntactic subsection of the alternant. The
description of the dependency subsection in EBNF is the
following:

12Polibits (38) 2008

Ştefan Diaconescu

[27] dependencySubsection ::= 'Dependencies' S

(coordinateRelation | subordinateRelation)+
[28] coordinateRelation ::= label ':' S? ((('Reference' S) | (

'Definition' ' S ')) ? '@' S? name S? '@' S? '(' S? '2' S? ')'
(S? '!')? (('Subordinate' S label)? | ('Coordinate' S label
S? '(' S? ('1' | '2') S? ')')?) ('Governor' (S label) | (S
label S? '(' S? ('1' | '2') S? ')')+)?

A coordinate relation label must be unique among the

alternant labels.
The 'Reference' key word indicates (if present) that the

current coordinate relation is not defined in the current rule
but it is referred from another rule.

The 'Definition' key word indicates (if present) that the
current coordinate relation is defined in the current rule and it
will be referred from other rules.

A coordinate relation can be followed by cut (“!”) because
a coordinate relation can be head and using cut this feature
will be discarded.

The Subordinate list of a coordinate relation can contain
only one label of a subordinate relation from Dependency
subsection.

The Coordinate list of a coordinate relation can contain
only one label of a coordinate relation from Dependency
subsection (referred on a fixed entry).

The Governor list of a coordinate relation can contain one
or more labels of governor / subordinate relation from
Dependency subsection. The current coordinate relation can
be:

- governor for other NTPAs or coordinate relations (using a
governor / subordinate relation indicated by a label not
followed by a number in parenthesis); this means that the links
from these governor / subordinate relations will come on the
current coordinate relation on supplementary inputs);

- “governor” for other NTPAs or coordinate relations (using
a label followed by a number of a fixed entry); this means that
the links from these NTPAs or coordinate relations will
appear on the corresponding fixed entry of the current
coordinate relation.

For the same coordinate relation: the Subordinate list and
the Coordinate list are exclusive and each of them can coexist
with Governor list.

[29] subordinateRelation ::= label ':' S? ((('Reference' S) | (

'Definition' ' S ')) ? '@' S? name S? '@' (('Subordinate' S
label)? , ('Governor' S label)?)

A subordinate relation label must be unique among the

alternant labels.
A subordinate relation has always one entry; so, we do not

need to specify the number of entries. In fact, the presence of
the entry number in coordinate relation indicates the fact that
it is a coordinate relation.

The 'Reference' and 'Definition' key words have the same
significance as for coordinateRelation.

The Subordinate list of a subordinate relation can contain
only one label of a coordinate relation from the Dependency
subsection (where it will go on a supplementary input) or of
an NTPA from the Syntax subsection.

The Governor list of a subordinate relation contains only
one label of an NTPA from the Syntax subsection or of a
coordinate relation from the Dependency subsection.

Observation 1: Because a link has two extremities, it can
be indicated by the any of its ends or by both. There are many
ways to indicate a link according to its type. It is advisable to
make the grammar description in such a way that a link appear
only once (to the element from where the link leaves or to the
element where the link arrives). See TABLE III where we use
the notations:

GR = Governor/Subordinate Relation
CR = Coordinate relation
SL = Subordinate List
GL = Governor List
CL = Coordinate List

TABLE III
INDICATION OF LINKS

How the link is indicated Link
type

Link
source
(label

A)

Link
target
(label

B)

1 2

1 NTPA GR B in SL of A A in GL of
B.

2 NTPA CR (on
fixed
entry)

B in CL of A
(with fixed
entry number
of B)

A in GL of
B (with
fixed entry
of B)

3 GR NTPA B in SL of A A in GL of
B

4 GR CR (on
supp.
entry)

B in SL of A A in GL of
B

5 CR GR B in SL of A A in GL of
B

6 CR CR (on
fixed
entry

B in CL of A
(with fixed
entry number
of B)

A in GL of
B (with
fixed entry
number of
B)

Observation 2: In the Table IV it is indicated that we can

put in different relational lists function of the element that the
list belongs to.

Example

… ::= …<non terminal 1>
{Sequence:

(gender = masculine, feminine, neutral)
(number = singular, plural)}

<non terminal 2> {Sequence}
<non terminal 3> {Sequence}

TABLE IV
THE RELATIONAL LIST CONTENT

13 Polibits (38) 2008

Natural Language Syntax Description using Generative Dependency Grammar

List
type

List
owner

List content

NTPA The labels of one or many governor /
subordinate relations that have outputs
going to the current NTPA.

GR The label of a coordinate relation or of an
NTPA that have outputs going on the
input of the current governor /
subordinate relation.

GL

CR The labels of one or many governor /
subordinate relation (that have outputs
going to the supplementary input of the
current coordinate relation) and / or
labels of some NTPAs or other
coordinate relation that have outputs
going on fixed entries of the current
coordinate relation. In this case, the
corresponding number of fixed entry is
indicated too.

NTPA The label of only one governor /
subordinate relation that have an input
where the output of the current NTPA
goes.

GR The label of a coordinate relation (where
the output of the current governor /
subordinate relation will go on a
supplementary input) or of an NTPA
(that have an entry where the output of
the current governor / subordinate
relation will go).

SL

CR The label of a governor / subordinate
relation that has an input where the
output of the current coordinate relation
will go.

NTPA The label of only one coordinating
relation (where the output of the current
NTPA will go on a fixed entry). In this
case the number of the fixed entry is also
indicated.

CL

CR The label of only one coordinating
relation (where the output of the current
coordinate relation will go on a fixed
entry). In this case the number of the
fixed entry is also indicated.

Fig. 4. The content of Governor, Subordinate and Coordinate lists

(GL, SL, CL)

[30] attribute ::= notIndexedAttribute | indexedAttribute | '{'

S? label ':' S? attribute+ S? '}' | '{' S? attribute+ S? '}' | '{'
S? label S? '}'

In this representation, the label of an attribute sequence

allows to compact the rule. If the same attribute sequence
appears many times in a rule (in the left side or in the
alternants from the right side), then the first apparition of the
sequence can be labeled and the following apparitions can be
indicated only by using this label. A label of an attribute
sequence must be unique in the current rule.

[31] notIndexedAttribute ::= '(' (((S? label ':' S?)?

attributeContent) | label) ')'
[32] indexedAttribute ::= '[' (((S? label ':' S?)?

attributeContent) | label) ']'
[33] attributeContent ::= category S? '=' S? categoryValue (S?

',' S? categoryValue)*

In this representation, the label of an attributeContent
allows to compact the rule. If the same attribute appears many
times in a rule (in the left side or in the alternants from the

NTPASL (1 elem.) CL (1 elem.)

RL (n elem.)

Obs.: SL and CL
are exclusive.

GR CR

GR

21

or

SL (1 elem.)

GL (1 elem.)

Obs.: GR has
not CL

CR
21 or

SL (1 elem.) CL (1 elem.)

GL (n elem.)
Obs.: SL and CL
are exclusive.

GR CR

GR

21

or

NTPA

GR

NTPACR
21

or

CR
2 1

14Polibits (38) 2008

Ştefan Diaconescu

right side), then its first apparition can be labeled and the
following apparitions can be indicated only by using this
label. A label of an attribute must be unique in the current
rule.

Example
… ::= …<non terminal 1>

(Gender1: gender = masculine, feminine,
neutral)

(Number1: number = singular, plural)
<non terminal 2>

(Gender2: gender = masculine, feminine)
(Number2: number = singular)

<non terminal 3>
(Gender1) (Number1)

<non terminal 4>
(Gender2) (Number2)

If an indexedAttribute contains a label then this label will

play the role of an index. If the indexedAttribute do not have a
label, then the category from attributeContent will play the
index role. In any cases, categoryValue from attributeContent
represent all the values that the index can take.

Example
Let us have a set of rules of the form:

<complex subjective group>

[person = I, II, III]
[number = sg, pl]
[gender = m, f, n]
::=
Alternant A1:

<unitary subjective group>
[person = I, II, III]
[number = sg, pl]
[gender = m, f, n]

Alternant A2:
<logical subjective group>
[person = I, II, III]
[number = sg, pl]
[gender = m, f, n]

Alternant A3:
<distributive subjective group>
[person = I, II, III]
[number = sg, pl]
[gender = m, f, n]

Alternant A4:
<correlative subjective group>
[person = I, II, III]
[number = sg, pl]
[gender = m, f, n

Considering the combinations for person, number and

gender, this rule represents in fact 18 rules.
Example
The same thing can be written more compact as follows:

<complex subjective group>

[e1: persoana = I, II, III]

[e2: number = sg, pl]
[e3: gen = m, f, n]
::=
Alternant A1:

<unitary subjective group> [e1][e2][e3]
Alternant A2:

<logical subjective group>[e1][e2][e3]
Alternant A3:

<distributive subjective group>[e1][e2][e3]
Alternant A4:

<correlative subjective group>[e1][e2][e3]

Example
A more important using of the indexing is when the

same category must serve as index in many ways in the same
alternant.

<non terminal1>

[e1: attribute1 = value11, value12, value13]
[e2: attribute2 = value21, value22]
[e3: attribute3 = value31, value32, value33]
::=
Alternant A1:

<non terminal2>[e1][e2][e3]
<non terminal3>
[e4: attribute1 = value11, value12, value13]
[e5: attribute2 = value21, value22, value23]
[e6: attribute3 = value31, value32, value33]
<non terminal4>[e4][e5][e6]

In this example, the attributes e1: attribute1, e2: attribute2,

e3: attribute3 are considered as indexes different from e4:
attribute1, e5: attribute2, e6: attribute3 (i.e., for example,
<non terminal1> and <non terminal2> must have the same
value for attribute1, <non terminal3> and <non terminal4>
must have the same value for attribute1 but the values for
attribute1 can be different in <non terminal1> and in <non
terminal3>, etc.)

[34] categoryValue ::= name S attribute*

We can see that a categoryValue can be followed by an
attribute sequence. In this way, a branching in an attribute
value tree is represented. A sequence of “category = value”
that pass by such branching points represents a path in the
AVT. The syntax must be written in such a way that a path do
not have many apparition of the same category.

E. Agreement Subsection
The agreement subsection of an alternant describes the

conditions that must be respected by the morphologic /
syntactic categories of the NTPA from the syntactic
subsection. The description of the agreement subsection in
EBNF is the following:

[35] agreementSubsection ::= 'Agreement' agreementRule+
[36] agreementRule ::= 'if' S? '(' S? conditionExpression S? ')'

S? alternatives+ ((S? 'else' S? '(' S? agreementRule S? ')'

15 Polibits (38) 2008

Natural Language Syntax Description using Generative Dependency Grammar

S?) | (S? 'else' S? agreementRule S?) | (S? 'else' S? '('
S? actionList S? ')'))?

[37] alternatives ::= ('true' S? '(' S? expression S? ')') | ('false'
S? '(' S? expression S? ')') | ('not' S? 'applicable' S? '(' S?
expression S? ')') | ('not' S? 'determinated' 'S? (' S?
expression ')')

[38] expression ::= actionList | agreementRule

A conditionExpression can have one of the four truth
values. We will use a tetravalent logic that has the following
truth values: TRUE, FALSE, NOT APPLICABLE, NOT
DETERMINATE. Therefore, after 'if' S? '(' S?
conditionExpression S? ')' S? we must have a list of maximum
four alternatives and these alternatives must be different. If
some alternatives are missing, they can globally be treated
using else.

Example
Let us have the following sequence:

if (conditionExpression)
true(expression 1)
not applicable(expression 2)
else(expression 3)

Such an expression is read: "if conditionExpression is true

then execute expression1 and if conditionExpression is not
applicable then execute expression2 otherwise (i.e.
conditionExpression is false or not determinated) then execute
expression3”.

[39] conditionExpression ::= ('(' S? conditionExpression S? ')'

S? logicalOperator S? conditionExpression) | (S? '~' S?
'(' S? conditionExpression S? ')' S? logicalOperator S?
conditionExpression) | ('(' S? conditionExpression S? ')')
| ('~' S? '(' S? conditionExpression S? ')') |
(simpleExpression S? logicalOperator S?
simpleExpression) | simpleExpression

In order to formulate the logical value of the

conditionExpression we can use logicalOperators (including
the negation “~”), parenthesis and operands that are
simpleExpression.

[40] logicalOperator ::= 'and' | 'or'
[41] simpleExpression ::= ({operand} S? '+ S? {operand} S?

'<-' S? {operand}) | ({operand} S? '<-' S? {operand}) |
({operand} s? '->' S? {operand}S? '+' S? {operand}) |
({operand} S? '->' S? {operand})

[42] operand ::= label attribute+

An operand indicates an NTPA that is involved in the
agreement. The agreement is usually expressed between a
governor and a subordinate. Let us have the example: “Not
only the rain but also the wind corrode the cliffs.” Between
“Not only the rains but also the winds” as multiple subject
and “corrode” must be described an agreement. (We can also

describe a sort of agreement also between “not only” and “but
also” as two parts of a correlation.)

If we have a governor / subordinate relation, then the
operator representing the governor will be at left of “<-” or at
right of “->” (the arrow looks at the governor).

An expression of the form operand1 + operand2 <-
operand3 or operand3 ->operand1 + operand2 is read: “if
operand1 has some features a1 (attributes and values: a certain
gender, a certain number, etc.) and operand2 has certain
features a2 then the operand3 must have certain features a3.

An expression operand1 <- operand2 or operand2 ->
operand1 is read: “if operand1 has certain features a1 then
operand2 must have certain features a2”.

The operand contains a label of an NTPA (from the
syntactic subsection of the current alternant) involved in the
agreement and an attribute under the form of an AVT.

An AVT (indicated by attribute) of an operand must be
unifiable with the AVT associated to the corresponding NTPA
(indicated by label).

A simpleExpression is TRUE when all its operands have
AVTs unifiable with the corresponding AVT from the
syntactic subsection.

A simpleExpression is FALSE when the AVT
corresponding to the operands represented the governor is
unifiable with the corresponding AVT of NTPA from
syntactic subsection and those representing the subordinate
are not.

A simpleExpression is NOT APPLICABLE if at least one
of the operands representing the governor has a not unifiable
AVT.

(A value of NOT DETERMINED can appear only by the
evaluation of the conditionExpression containing simple
expressions.)

Example
Let us have two non terminals that appear in syntactic

subsection of an alternant:

Label1: <non terminal1> (a = av1, av2)

(b = bv1, bv2, bv3)
(c = cv1, cv2, cv3)

Label2: <non terminal2> (d = dv1, dv2)
(e = ev1, ev2, ev3)
(f = vf1, vf2, vf3)

Let us have the simple expression of the form:

Label1(a = av1, av2)(b = bv2, bv3) -> Label2(e =ev1, ev2)(f =
vf2)

During the syntactic analysis, after the current alternant was
analyzed and recognized in source text, <non terminal1> and
<non terminal2> will have only some of the above
attributes/values.

The operand Label1(a = av1, av2)(b = bv2, bv3) will be
unifiable with <non terminal1> when this one will have after
the syntactic analysis:

16Polibits (38) 2008

Ştefan Diaconescu

- the category a with the values av1 or av2;
- the category b with the values bv1 or bv3.
The operand Label2(e =ev1, ev2)(f = vf2) will be unifiable

with the <non terminal2> when this one will have after the
syntactic analysis:

- the category e with the values ev1 or ev2;
- the category f with the value vf2.

Example
Let us have two non terminals that appear in syntactic

subsection of an alternant:
Label1: <elementary nominal group>

(negation = affirmative, negative)
(person = I, II)
(number = singular)
(gender = masculine, feminine)

Label2: <verbal group>
(negation = affirmative, negative)
(person = I, II)
(number = singular)
(gender = masculine, feminine)

Let us have the expression of the form:

Label1(person = I) <- Label2(person = I)
or
Label1(persoana = II) <- Label2(person = II)

This expression will be TRUE when the non terminal with
the labels Label1 and Label2 will have the same person (I or
II).

Using the indexed representation of the attributes, the
expression can be written more compact:

Label1[person = I, II] <- Label2[person = I, II]

[43] actionList ::= action (S? ',' S? actionList)*
[44] action ::= ('Message' S? '=' S? label) | ('OK' | 'KO') |

('Context' S? = S? '(' S? label (S label)* S? ')')

The Message is an error message indicated by a label in
another GRAALAN section not described in this paper (where
messages in different languages can be found). This message
will be displayed during the syntactic analysis of a source text.

The mode OK | KO indicated how the current NTPA
situation must be treated:

- KO: negative;
- OK: positive.
Observation 3: An agreement rule between different

NTPAs of an alternant make sense only if all these NTPAs
have associated attributes with many values in the syntactic
subsection of the alternant. If the NTPAs have not attributes
or they have attributes but all the attributes have only one
value then the agreement problem is solved by the syntactic
description itself and we do not need an agreement rule.

The message Context is represented by the labels of
certain NTPA or relations that can be used in debugging
process.

Example
Let us take an agreement expression of the form:

if (Label1(person = I) -> Label2(person = I))

true (OK)
else (Message = Label3, OK)

It will be read: “If the NTPA with the label Label1 from

the syntactic subsection has the person I and the NTPA with
the label Label2 from syntactic subsection has the person I
then continue the syntactic analysis, otherwise display the
error message with the label Label3 (and that can be for
example defined in Message section of GRAALAN language
like: "Person number agreement error") and continue after that
the syntactic analysis as it was not an error.”

V. CONCLUSION
We presented a method to describe the syntax of a natural

language. The description mode is part of a more general
language GRAALAN that allows the description of a natural
language or the correspondences between two natural
languages. We consider that this kind of description is quite
general and fit for almost any natural language.

In order to use the description method, some tools are
needed [11]. Among these tools, a very important one is
GRAALAN compiler. This compiler analyzes the description
GRAALAN text and converts it to XML. The XML
information will form an LKB (Linguistic Knowledge Base).
The knowledge form LKB can afterwards be used to build
different linguistic applications: morphologic analyzer,
grammar checker, inflection application, indexing / searching
application, lemmatizer, speller, hyphenating application,
different kinds of lexicons and dictionaries, different kinds of
machine translation applications (human assisted machine
translation, computer assisted machine translation, automatic
machine translation), etc.

Some tools for GRAALAN are already developed
(GRAALAN Macro processor, GRAALAN Compiler,
Inflection Forms Tool that allows an automatic / interactive
generation of the inflected forms). Some tools are currently in
design / implementation stage (Lexicon Tool that allows an
automatic / interactive lexicon creation, LINK that checks the
coherence of an entire LKB). Some Romanian linguistic
knowledge bases are already defined (Alphabet Section,
Morphologic Configurator Section, Syllabification Section,
Inflection Rules Section), some are partially developed
(Lexicon Section, Syntax Section), some will be soon
developed (Inflection Forms Section).

We hope that the system built on GRAALAN will be an
important tool to elaborate some unified and very general
linguistic applications.

REFERENCES
[1] H. Alshawi, D. J. Arnold, R. Backofen, D. M. Carter, J. Lindop, K.

Netter, S. G. Pulman, J. Tsujii, H. Uszkoreit. EurotraET6/1: Rule

17 Polibits (38) 2008

Natural Language Syntax Description using Generative Dependency Grammar

Formalism and Virtual Machine Study. Final Report. Commission of the
European Communities, 1991.

[2] R. Backofen et al. EAGLES Formalism Working Group Final Report.
Expert Advisory Group on Language Engineering Standards, 1996.

[3] S. Diaconescu. Natural Language Understanding Using Generative
Dependency Grammar. In: M. Bramer, A. Preece and F. Coenen (Eds),
Twenty second SGAI International Conference on Knowledge Based
Systems and Applied Artificial Intelligence, pp.439-452, Cambridge UK,
Springer, 2002.

[4] S. Diaconescu. Morphological Categorization Attribute Value Trees and
XML. In: M. A. Klopotek, S. T. Wierzchon, K. Trojanowski (Eds),
Intelligent Information Processing and Web Mining, Proceedings of the
International IIS: IIPWM’03 Conference, pp. 131-138, Zakopane,
Poland, Springer, 2003.

[5] S. Diaconescu. Natural Language Agreement Description for Reversible
Grammars. In: T. D. Gedeon, L. C. C. Fung (Eds.), Advances in
Artificial Intelligence, 16th Australian Conference on AI, pp. 161-172,
Perth, Australia, Springer, 2003.

[6] S. Diaconescu. Natural Language Processing Using Generative Indirect
Dependency Grammar. In: M. A. Klopotek, S. T. Wierzchon, K.
Trojanowski (Eds), Intelligent Information Processing and Web Mining,
Proceedings of the International IIS, IIPWM’04 Conference, pp. 414-
418, Zakopane, Poland, Springer, 2004.

[7] S. Diaconescu. Multiword Expression Translation Using Generative
Dependency Grammar. In: J. L. Vicedo, P. Martinez-Barco, R. Muñoz,
M. S. Noeda (Eds.), Advances in Natural Language Processing,
Proceedings of 4th International Conference, ESTAL 2004, pp. 243-254,
Alicante, Spain, Springer, 2004.

[8] S. Diaconescu. GRAALAN – Grammar Abstract Language Basics. In: J.
M. Jun, B. M. Bae, K. Y. Lee (Eds) GESTS International Transaction on
Computer Science and Engineering, Vol.10, No.1: Sunjin Publishing
Co., 2005.

[9] S. Diaconescu. Some Properties of the Attribute Value Trees Used for
Linguistic Knowledge Representation. In: 2nd Indian International
Conference on Artificial Intelligence (IICAI-05), Pune, INDIA, 2005.

[10] S. Diaconescu. Creation of the linguistic resources using a specialised
language. (Crearea resurselor lingvistice cu ajutorul unui limbaj

specializat), In C. Forăscu, D. Tufiş, D. Cristea (Eds.), Workshop on
Linguistic resources and tools for Romanian Language Processing, pp.
39-44, Iassi, Romania, Editura Universităţii A. I. Cuza, 2006.

[11] S. Diaconescu. Complex Natural Language Processing System
Architecture. In: Corneliu Burileanu, Horia-Nicolai Teodorescu (Eds.),
Advances in Spoken Language Technology, pp. 228-240, Bucharest,
Romania: The Publishing House of the Romanian Academy, 2007.

[12] EAGLES Formalism Working Group Final Report, Version of
september 1996.

[13] IPA International Phonetic Association. Handbook of the International
Phonetic Association, A Guide to the Use of the International Phonetic
Alphabet. Cambridge, UK: Cambridge University Press, 2005.

[14] ISO/IEC 10646. Information technology -- Universal Multiple-Octet
Coded Character Set (UCS). Geneva, International Organization for
Standardization, 1992.

[15] ISO 639 (E). Code for the representation of names of languages.
Geneva, International Organization for Standardization, 1998.

[16] A. Joshi, L. Levi, L. Takabashi. Tree Adjunct Grammars. Journal of the
Computer and System Sciences, 1975.

[17] C. Pollard, I. Sag. Head-Driven Phrase Structure Grammar. Stanford:
CSLI & Chicago: U Chicago Press, 1994.

[18] S. Kahane. Grammaire d’Unification Sens-Texte. Vers un modèle
mathématique articulé de la langue. Document de synthèse, Paris,
France: Univ. Paris 7, 2002.

[19] R. Kaplan, J. Bresnan. Lexical Functional Grammar. A Formal System
for Grammatical Representation. In: J. Bresnan (ed), The Mental
Representation of Grammatical Relations: Massachusetts USA: MIT
Press, 1982

[20] J. Landsbergen. Isomorphic grammars and their use in the ROSETTA
translation system. In: Machine Translation Today: The State of the Art,
Edinburgh UK: Edinburgh University Press, 1987.

[21] L. Tesnière. Éléments de syntaxe structurelle, Paris France: Klincksieck,
1959.

[22] W3C. Extensible Markup Language (XML) 1.0, Recommendation. 10-
Feb-98, pp. 24-25, 1998.

18Polibits (38) 2008

Ştefan Diaconescu

Abstract—The paper describes a Tamil Part of Speech (POS)
tagging using a corpus-based approach by formulating a
Language Model using morpheme components of words. Rule
based tagging, Markov model taggers, Hidden Markov Model
taggers and transformation-based learning tagger are some of the
methods available for part of speech tagging. In this paper, we
present a language model based on the information of the stem
type, last morpheme, and previous to the last morpheme part of
the word for categorizing its part of speech. For estimating the
contribution factors of the model, we follow generalized iterative
scaling technique. Presented model has the overall F-measure of
96%.

Index Terms—Bayesian learning, language model, morpheme
components, generalized iterative scaling.

I. INTRODUCTION
art-of-speech tagging, i.e., the process of assigning the
part-of-speech label to words in a given text, is an
important aspect of natural language processing. The
first task of any POS tagging process is to choose
various POS tags. A tag set is normally chosen based on

the language technology application for which the POS tags
are used. In this work, we have chosen a tag set of 35
categories for Tamil, keeping in mind applications like named
entity recognition and question and answering systems. The
major complexity in the POS tagging task is choosing the tag
for the word by resolving ambiguity in cases where a word can
occur with different POS tags in different contexts. Rule based
approach, statistical approach and hybrid approaches
combining both rule based and statistical based have been
used for POS tagging. In this work, we have used a statistical
language model for assigning part of speech tags. We have
exploited the role of morphological context in choosing POS
tags. The paper is organized as follows. Section 2 gives an
overview of existing POS tagging approaches. The language
characteristics used for POS tagging and list of POS tags used
are described in section 3. Section 4 describes the effect of
morphological context on tagging, while section 5 describes
the design of the language model, and the section 6 contains
evaluation and results.

II. RELATED WORK
The earliest tagger used a rule based approach for assigning

tags on the basis of word patterns and on the basis of tag

Manuscript received May 12, 2008. Manuscript accepted for publication
October 25, 2008.

S. Lakshmana Pandian and T. V. Geetha are with Department of Computer
Science and Engineering, Anna University, Chennai, India
(lpandian72@yahoo.com).

assigned to the preceding and following words [8], [9]. Brill
tagger used for English is a rule-based tagger, which uses hand
written rules to distinguish tag entities [16]. It generates
lexical rules automatically from input tokens that are
annotated by the most likely tags and then employs these rules
for identifying the tags of unknown words. Hidden Markov
Model taggers [15] have been widely used for English POS
tagging, where the main emphasis is on maximizing the
product of word likelihood and tag sequence probability. In
essence, these taggers exploit the fixed word order property of
English to find the tag probabilities. TnT [14] is a stochastic
Hidden Markov Model tagger, which estimates the lexical
probability for unknown words based on its suffixes in
comparison to suffixes of words in the training corpus. TnT
has developed suffix based language models for German and
English. However most Hidden Markov Models are based on
sequence of words and are better suited for languages which
have relatively fixed word order.

POS tagger for relatively free word order Indian languages
needs more than word based POS sequences. POS tagger for
Hindi, a partially free word order language, has been designed
based on Hidden Markov Model framework proposed by Scutt
and Brants [14]. This tagger chooses the best tag for a given
word sequence. However, the language specific features and
context has not been considered to tackle the partial free word
order characteristics of Hindi. In the work of Aniket Dalal et
al. [1], Hindi part of speech tagger using Maximum entropy
Model has been described. In this system, the main POS
tagging feature used are word based context, one level suffix
and dictionary-based features. A word based hybrid model [7]
for POS tagging has been used for Bengali, where the Hidden
Markov Model probabilities of words are updated using both
tagged as well as untagged corpus. In the case of untagged
corpus the Expectation Maximization algorithm has been used
to update the probabilities.

III. PARTS OF SPEECH IN TAMIL
Tamil is a morphologically rich language resulting in its

relatively free word order characteristics. Normally most
Tamil words take on more than one morphological suffix;
often the number of suffixes is 3 with the maximum going up
to 13. The role of the sequence of the morphological suffixes
attached to a word in determining the part-of-speech tag is an
interesting property of Tamil language. In this work, we have
identified 79 morpheme components, which can be combined
to form about 2,000 possible combinations of integrated
suffixes. Two basic parts of speech, namely, noun and verb,
are mutually distinguished by their grammatical inflections. In

Morpheme based Language Model
for Tamil Part-of-Speech Tagging

S. Lakshmana Pandian and T. V. Geetha

P

19 Polibits (38) 2008

Tamil, noun grammatically marks number and cases. Tamil
nouns basically take on eight cases. The normal morphological
derivatives of Tamil nouns are as follows:

StemNoun + [Plural Marker]+[Oblique]+[Case Marker]

The normal morphological derivative of Tamil Verb is as
follows

StemVerb+[Tense Marker]+[Verbal Participle
Suffix]+[Auxiliary verb +[Tense Marker]+[Person, Number,
Gender]

In addition, adjective, adverb, pronoun, postposition are
also some stems that take suffixes. In this work, we have used
a tagged corpus of 4,70,910 words, which have been tagged
with 35 POS categories in a semiautomatic manner using an
available morphological analyzer [5], which separates stem
and all morpheme components. It also provides the type of
stem using lexicon. This tagged corpus is the basis of our
language model.

IV. EFFECT OF MORPHOLOGICAL INFORMATION IN TAGGING
The relatively free word order of Tamil normally has the

main verb in a terminating position and all other categories of
words can occur in any position in the sentence. Pure word
based approaches for POS tagging are not effective. As
described in the previous section, Tamil has a rich multilevel
morphology. This work exploits this multi-level morphology
in determining the POS category of a word. The stem, the pre-
final and final morpheme components attached to the word
that is the words derivative form normally contribute to
choosing the POS category of the word. Certain sequence of
morpheme can be attached to the certain stem types.
Moreover, the context in which morphological components
occur and its combinations also contribute in choosing the
POS tag for a word. In this work, language models have been
used to determine the probabilities of a word derivative form
functioning as a particular POS category.

TABLE I.
LIST OF TAGS FOR TAMIL AND THEIR DESCRIPTION

 Tag Description
1. N Noun
2. NP Noun Phrase
3. NN Noun + noun
4. NNP Noun + Noun Phrase
5. IN Interrogative noun
6. INP Interrogative noun phrase
7. PN Pronominal Noun
8. PNP Pronominal noun
9. VN Verbal Noun
10 VNP Verbal Noun Phrase
11 Pn Pronoun
12 PnP Pronoun Phrase
13 Nn Nominal noun

 Tag Description
14 NnP Nominal noun Phrase
15 V Verb
16 VP Verbal phrase
17 Vinf Verb Infinitive
18 Vvp Verb verbal participle
19 Vrp Verbal Relative participle
20 AV Auxiliary verb
21 FV Finite Verb
22 NFV Negative Finite Verb
23 Adv Adverb
24 SP Sub-ordinate clause conjunction

Phrase
25 SCC Sub-ordinate clause conjunction
26 Par Particle
27 Adj Adjective
28 Iadj Interrogative adjective
29 Dadj Demonstrative adjective
30 Inter Intersection
31 Int Intensifier
32 CNum Character number
33 Num Number
34 DT Date time
35 PO Post position

V. LANGUAGE MODEL
Language models, in general, predict the occurrence of a

unit based on the statistical information of unit’s category and
the context in which the unit occurs. Language models can
differ in the basic units used for building the model, the
features attached to the units and the length of the context used
for prediction. The units used for building language models
depend on the application for which the model is used. Bayes’
theorem is usually used for posterior probability estimation
from statistical information. Bayes’ theorem relates the
conditional and marginal probabilities of stochastic events A
and B as follows

)Pr()/(
)Pr(

)Pr()/Pr()/Pr(ABAL
B

AABBA α=
 (5.1)

where L(A|B) is the likelihood of A given fixed B.

Each term in Bayes’ theorem is described as follows.
Pr(A) is the prior probability or marginal probability of A.

It is "prior" in the sense that it does not take into account any
information about B.

Pr(B) is the prior or marginal probability of B, and acts as a
normalizing constant.

Pr(A|B) is the conditional probability of A, given B. It is

20Polibits (38) 2008

S. Lakshmana Pandian and T.V. Geetha

also called the posterior probability because it is derived from
or depends upon the specified value of B.

Pr(B|A) is the conditional probability of B given A.
In this paper, we have used a language model that considers

the lexical category of the stem along with morphological
components of a word in order to determine its POS tag.

In case the word is equal to a stem then its POS category is
the same as the stem lexical category. In case the word
consists of a stem and a single morphological component then
the language model is designed by considering both the lexical
category of the stem and the morphological component. It is
given by the equation 5.2:

)()
_

()
,_

(21
ll e

posp
typeroot

posp
etyperoot

posP αα +=
 (5.2)

where)
,_

(
letyperoot

posP gives the probability of the word

being tagged with the particular pos tag given a particular
stem type and a particular morphological ending le . The two
factors used for this probability calculation are

)
_

(
typeroot

posp , the prior probability of a particular pos tag

given a particular stem type and)(
le

posp , the prior

probability of a particular pos tag given a particular
morphological ending le . In addition, α1 and α2 are
contribution factors and α1 + α2 = 1.
In order to calculate the prior probability

)(
le

posp
 we use

equation 5.3:

)(

)()(
)(

l

l

l eP
pos
e

pposP

e
posP = (5.3)

In equation 5.3)(posP is the posterior independent
probability of the particular pos in the given corpus.

)(
pos
e

p l is the posterior probability of the final

morphological component given the particular pos tag
calculated from the tagged corpus.)(leP is the posterior
independent probability of final morphological component
calculated from the tagged corpus. This probability is
calculated using equation 5.4:

)()()(
1

∑
=

=
k

i i

l
il pos

e
ppospeP (5.4)

)(leP is calculated as a summation of all possible pos type

k .)(leP , the product of)(iposp , the posterior probability

of the given pos type i in the corpus and
i

l

pos
e

p (), the

posterior probability of the final morpheme component given
the pos tag i.

In case the word whose pos tag is to be determined consists
of more than one morphological component, then the language

model is designed by considering three factors: the lexical
category of the stem and the pre-final and final morphological
component and is given by equation 5.5:

)()()
_

()
,,_

(3
1

21
1 llll e

pos
p

e
pos

p
typeroot

pos
p

eetyperoot
pos

P ααα ++=
−−

 (5.5)

where)
,,_

(
1 ll eetyperoot

posP
−

 gives the probability of the

word being tagged with the particular pos tag given a
particular stem type and a particular morphological pre-final
and final components 1−le and le . The three factors used for
this probability calculation are)

_
(

typeroot
posp , the prior

probability of a particular pos tag given a particular stem type
and)(

le
posp , the prior probability of a particular pos tag

given a particular morphological component le . These two
factors are similar to the equations 5.1 and 5.2. The second
factor)(

1−le
posp is the prior probability of a particular pos tag

given a particular morphological component 1−le . In addition,
α1 , α2 and α3 are contribution factors and α1 + α2 + α3 = 1. In
order to calculate the prior probability

)(
1−le

posp
 we use the

equation:

)(

)()(
)(

1

1

1 −

−

−

=
l

l

l eP
pos
epposP

e
posP

 (5.6)

In equation 5.6)(posP is the posterior independent
probability of the particular pos in the given corpus.

)(1

pos
e

p l −

 is the posterior probability of the final
morphological component given the particular pos tag
calculated from the tagged corpus.)(1−leP is the posterior
independent probability of final morphological component
calculated from the tagged corpus. This probability is
calculated using equation 5.7.

)()()(
1

1
1 ∑

=

−
− =

k

i i

l
il pos

e
ppospeP (5.7)

)(1−leP is calculated as a summation of all possible pos
type k.)(1−leP , the product of)(iposp , the posterior
probability of the given pos type i in the corpus and

i

l

pos
e

p 1(−), the posterior probability of the final morpheme

component given the pos tag i. The next section describes the
calculation of contribution factors.

VI. ESTIMATION OF CONTRIBUTION FACTORS
Using generalized iterative scaling technique, the

contribution factors α1, α2 and α3 are calculated so as to
maximize the likelihood of the rest of the corpus. Coarse and
fine steps are used for finding the parameters. For the fixed

21 Polibits (38) 2008

Morpheme based Language Model for Tamil Part-of-Speech Tagging

value of α1, the α2 values are raised and simultaneously α3
values are decreased, the correctness is showing the
characteristic of inverted parabola in first quadrant of the
graph. This inherent property is used for designing the
following algorithm. Here, we are estimating the parameters in
two steps, namely, coarse and fine steps. At coarse step, the
value of increment and decrement is in the quantity of 0.1 for
estimating coarse optimal value of the parameters. At fine
step, the changes are in the quantity of .01 for estimating fine
optimal value of parameters.

Algorithm for Estimating α1, α2 and α3
Constraint α1 + α2 + α3 = 1
Max =0.0
Optimal _solution = set(0 , 0 , 1)

Coarse step
 Initialize α1=0.0
 Step in increment α1 by 0.1

 Repeat the following step until α1<=1.0
 Initialize val =0.0; and α2=0.0;

 Step in increment α2 by 0.1
 Repeat the following step until α2<=1.0- α1;
 set α3=1.0-(α1+α2);
 if the val is less than correctness (α1 , α2 , α3)
 assign the val = correctness (α1 , α2 , α3)
 else break the inner loop;
 Loop
 if the value of val greater than max
 Max = val
 Optimal _solution = set (α1, α2, α3)
 Loop
 Fine Step

 Initialize α1= optimal(α1);
 Step in increment α1 by 0.01

 Repeat the following step until α1<= optimal(α1) +0.09
 Assign val =0.0; and α2= optimal(α2);
 Step in increment α2 by 0.01
 Repeat the following step until α2<= optimal(α2)
 +0.09- α1
 Assign α3= 1.0-(α1+α2);
 If the val is less than correctness (α1 , α2 , α3))
 then
 val = correctness (α1 , α2 , α3)
 else
 Break inner loop;
 Loop
 if the value of Max less than Val
 Val = Max
 Optimal _solution = set (α1, α2, α3)
 Loop

(α1 , α2 , α3) ← value(Optimal _solution)

In this algorithm, correctness function will return the
percentage of words correctly tagged by the language model
with the corresponding contribution factors α1 , α2 and α3.
Optimal_solution is a set variable to store set of values of α1 ,
α2 and α3. The function optimal with a variable as the
parameter obtains the value of the corresponding parameter in
the set Optimal solution.

Parameter α1 , α2 and α3 for Language Model 1

TABLE II.

CONTRIBUTION FACTORS α1, α2, α3 FOR FINE STEP
α1 α2 α3 Correct (%)

0.30 0.21 0.49 86.67
0.31 0.21 0.48 86.64
0.32 0.22 0.46 86.82
0.33 0.23 0.44 86.55

After coarse step we got the values (0.3, 0.2, 0.5), thus, the

estimated values of α1 = 0.31, α2 =0.21 and α3 =0.48

Fig 1. Correctness in % for the parameter set in Table 2.

Fig. 1 shows the graphical representation of Correctness for

each set of parameter values as mentioned in Table II.

Parameter α1 and α2 for Language Model 2

TABLE III.

CONTRIBUTION FACTOR α1, α2 FOR COARSE STEP
 α1 α2 Correct (%)
1. 0.0 1.0 84.60
2. 0.4 0.6 93.06
3. 0.5 0.5 96.88
4. 0.6 0.4 98.37
5. 0.7 0.3 98.38
6. 0.8 0.2 99.37
7. 0.9 0.1 93.32
8. 1.0 0.0 90.00

There is no further improvement at fine step, so the

estimated values are α1 = 0.8 and α2 =0.2 .

22Polibits (38) 2008

S. Lakshmana Pandian and T.V. Geetha

Fig. 2. Correctness in % for the parameter set from Table 3.

Fig. 2 shows the graphical representation of Correctness for
each set of parameter values as mentioned in Table III.

VII. EVALUATION AND RESULTS
The implemented system is evaluated as in Information

Retrieval, which makes frequent use of precision and recall.
Precision is defined as a measure of the proportion of the

selected items that the system got right.

taggeditemsofNo
correctlytaggeditemsofNoprecision

.
.

=
 (6.1)

Recall is defined as the proportion of the target items that
the system selected.

taggedbetoitemsofNo
systemthebytaggeditemsofNocall

.
.Re =

 (6.2)

To combine precision and recall into a single measure of
over all performance, the F-measure is defined as

Rp

F 1)1(1
1

αα −+
=

(6.3)

where P is precision, R is recall and α is factor, which
determine the weighting of precision and recall. A value of α
is often chosen for equal weighting of precision and recall.
With this α value the F-measure simplifies to

RP
PRF
+

=
2 (6.4)

The perplexity is a useful metric for how well the language
model matches with a test corpus. The perplexity is a variant
of entropy. The entropy is measured by the following equation

))((log(1)_(
1

i

n

i
wtagp

n
typetagH ∑

=

−=
 (6.5)

)_(2)_(typetagHtypetagperplexity = (6.6)

The system is evaluated with a test corpus with 43,678
words in which 36,128 words are morphologically analyzed
within our tag set. 6,123 words are named entity, while the
remaining words are unidentified. The morphologically
analyzed words are passed into tagger designed using our
language model. The following table and graphs represents the

results obtained by the language models for determining the
tags.

TABLE IV.
NOUN CATEGORIES

Postag Recall Precision F-measure Perplexity

<N> 0.98 0.99 0.99 1.91

<Pn> 0.98 0.98 0.98 2.61

<IN> 1.00 1.00 1.00 1.63

<NN> 0.48 0.97 0.64 8.58

<NP> 0.99 0.87 0.93 3.29

<PnP> 0.81 1.00 0.89 1.91

<INP> 0.69 0.47 0.56 9.18

<VnP> 0.01 1.00 0.02 1.57

<PN> 0.00 0.00 0.00 -

<NNP> 0.15 0.97 0.27 1.87

<NnP> 0.60 0.71 0.65 3.95

<PNP> 0.00 0.00 0.00 -

<Vn> 0.81 0.96 0.88 1.63

<Nn> 0.18 1.00 0.33 3.63

Table IV shows noun category type POS tags in which the
tags <VNP>, <PN> and <PNP> are the noun category but its
stem is of type verb. Due to this reason, the words of these tag
types are wrongly tagged. These cases can be rectified by
transformation based learning rules.

TABLE V.

VERB CATEGORIES

Postag Recall Precision F-measure Perplexity

<V> 0.99 0.93 0.95 3.88

<AV/V> 1.00 1.00 1.00 1.00

<FV> 1.00 0.99 0.99 1.00

<NFV> 1.00 0.90 0.95 1.00

<NFV/DT> 0.00 0.00 0.00 -

<Vvp> 0.93 0.92 0.92 2.74

<VP> 0.81 0.87 0.84 3.66

<Vinf> 0.71 0.88 0.79 3.98

<V/Vrp> 0.99 1.00 0.99 19.40

<Vrp> 0.98 0.78 0.87 1.81

<V/Vinf> 0.99 0.97 0.98 1.13

<VC> 0.42 0.91 0.57 3.47

<Vpost> 0.00 0.00 0.00 -

Table V shows verb category type POS tags. A word ‘anRu’
in Tamil belongs to <NFV/DT> tag type. It has two type of
context with the meaning of (i) those day (DT) and (ii) not
(NFV). These cases have to be rectified by word sense

23 Polibits (38) 2008

Morpheme based Language Model for Tamil Part-of-Speech Tagging

disambiguation rules. Words of Tag type <Vpost> are
relatively very few. By considering further morpheme
components, these tag types can be identified.

TABLE VI.
OTHER CATEGORIES

Postag Recall Precision F-measure Perplexity

<DT> 1.00 1.00 1.00 1.00

<cNum> 1.00 1.00 1.00 1.00

<Madj> 1.00 0.99 0.99 1.00

<adj> 0.98 0.99 0.99 3.57

<Dadj> 0.99 1.00 0.99 1.00

<Iadj> 1.00 0.97 0.99 1.00

<PO> 1.00 1.00 1.00 1.00

<conj> 0.96 1.00 0.98 1.00

<par> 1.00 1.00 1.00 1.02

<Int> 1.00 1.00 1.00 1.00

<adv> 0.92 0.97 0.94 3.80

<SP> 1.00 1.00 1.00 9.22

<postAdj> 1.00 0.86 0.92 9.63

<SCC> 1.00 1.00 1.00 1.00

<PostP> 0.97 1.00 0.99 9.07

Table VI shows POS tags of other category types. The
occurrence of categories of this type is less as compared with
noun type and verb type.

Fig 3. F-measure for POS tag of noun categories.

Fig 4. F-measure for POS tag of verb categories.

Fig 5. F-measure for POS tag of other categories.

The same test is repeated for another corpus with 62,765

words, in which the used analyzer identifies 52,889 words.
49,340 words are correctly tagged using the suggested
language model. These two tests are tabulated in Table VII.

TABLE VII.

OVERALL ACCURACY AND PERPLEXITY.
 Words Correct Error Accuracy (%) Perplexity

T1 36,128 34,656 1,472 95.92 153.80
T2 36,889 34,840 2,049 94.45 153.96

As the perplexity values for both test cases are more or less

equal, we can conclude that the formulated language model is
independent of the type of untagged data.

VIII. CONCLUSION AND FUTURE WORK
We have presented a part-of-speech tagger for Tamil, which

uses a specialized language model. The input of a tagger is a
string of words and a specified tag set similar to the described
one. The output is a single best tag for each word. The overall
accuracy of this tagger is 95.92%. This system can be
improved by adding a module with transformation based
learning technique and word sense disambiguation. The same
approach can be applied for any morphologically rich natural
language. The morpheme based language model approach can
be modified for chunking, named entity recognition and
shallow parsing.

REFERENCES
[1] Aniket Dalal, Kumar Nagaraj, Uma Sawant, Sandeep Shelke , Hindi

Part-of-Speech Tagging and Chunking : A Maximum Entropy
Approach. In: Proceedings of the NLPAI Machine Learning Contest
2006 NLPAI, 2006.

[2] Nizar Habash , Owen Rambow ,Arabic Tokenization, Part-of-Speech
Tagging and Morphological Disambiguation in one Fell Swoop. In:
Proceedings of the 43rd Annual Meeting of the ACL, pages 573–580,
Association for Computational Linguistics, June 2005.

[3] D. Hiemstra. Using language models for information retrieval. PhD
Thesis, University of Twente, 2001.

[4] S. Armstrong, G. Robert, and P. Bouillon. Building a Language Model
for POS Tagging (unpublished), 1996.
 http://citeseer.ist.psu.edu/armstrong96building.html

[5] P. Anandan, K. Saravanan, Ranjani Parthasarathi and T. V. Geetha.
Morphological Analyzer for Tamil. In: International Conference on
Natural language Processing, 2002.

[6] Thomas Lehman. A grammar of modern Tamil, Pondicherry Institute of
Linguistic and culture.

[7] Sandipan Dandapat, Sudeshna Sarkar and Anupam Basu. A Hybrid
Model for Part-of-speech tagging and its application to Bengali. In:
Transaction on Engineering, Computing and Technology VI December
2004.

24Polibits (38) 2008

S. Lakshmana Pandian and T.V. Geetha

[8] Barbara B. Greene and Gerald M. Rubin. Automated grammatical tagger
of English. Department of Linguistics, Brown University, 1971.

[9] S. Klein and R. Simmons. A computational approach to grammatical
coding of English words. JACM, 10:334-337, 1963.

[10] Theologos Athanaselies, Stelios Bakamidis and Ioannis Dologlou. Word
reordering based on Statistical Language Model. In: Transaction
Engineering, Computing and Technology, v. 12, March 2006.

[11] Sankaran Baskaran. Hindi POS tagging and Chunking. In: Proceedings
of the NLPAI Machine Learning Contest, 2006.

[12] Lluís Márquez and Lluis Padró. A flexible pos tagger using an
automatically acquired Language model. In: Proceedings of
ACL/EACL'97.

[13] K. Rajan. Corpus analysis and tagging for Tamil. In: Proceeding of
symposium on Translation support system STRANS-2002

[14] T. Brants. TnT - A Statistical Part-of-Speech Tagger. User manual,
2000.

[15] Scott M. Thede and Mary P. Harper. A second-order Hidden Markov
Model for part-of-speech tagging. In: Proceedings of the 37th Annual
Meeting of the Association for Computational Linguistics, pages 175—
182. Association for Computational Linguistics, June 20--26, 1999.

[16] Eric Brill. Transformation-Based Error-Driven Learning and Natural
Language Processing: A Case Study in Part-of-Speech Tagging.
Computation Linguistics, 21(4):543- 565, 1995.

25 Polibits (38) 2008

Morpheme based Language Model for Tamil Part-of-Speech Tagging

26Polibits (38) 2008

Abstract— The goal of this study is to outline the readability of
an Example-Based Machine Translation for any pair of
languages by means of the language-independent properties of
the lexical conceptual structure (LCS). We describe LCS as a
representation of traditional dependency relationships and use in
experiments an isolated pair of verbs, extracted from Orwell’s
“1984” parallel English – Romanian texts. We discuss the mental
models in terms of specific knowledge structures. Finally, we
present LCS-Based Machine Translation from the point of view
of a complex adaptive system and present our ongoing work in
order to capture the neutral linguistic core of any mental model
corresponding to the real world.

Index Terms—Lexical conceptual structure, machine
translation, readability, complex adaptive system.

I. INTRODUCTION
HE paradigm of ‘translation by analogy’, used to
characterize the Example-Based Machine Translation,

proposes the use of an unannotated database of examples
(possibly collected from a bilingual dictionary) and a set of
lexical equivalences simply expressed in terms of word pairs.
The matching process is focused on checking the semantic
similarity between the lexical items in the input sentence and
the corresponding items in the candidate example. In fact, an
Example-Based Machine Translation database is used for
different purposes at the same time: as a source of sentence
frame pairs, and as a source of sub-sentential translation pairs.

In this paper, we aim to present a new direction in designing
the structural Example-Based Machine Translation. We are
expanding the original Nagao’s model [1] in order to obtain
the translation of a complete sentence by utilizing more than
one translation example and combine some fragments of them.
Usually, the translation examples are represented as
dependency trees with correspondence links between sub-
trees. I propose here an issue to replace the traditional
representation of these translation examples with lexical
conceptual structure (LCS), a kind of a compositional
abstraction with language-independent properties that
transcend structural idiosyncrasies [2].

For an input sentence, there is a matching expression,
naming a pointer to a translation unit, i.e., a lexical conceptual
structure to be found in a manually constructed database of
examples. The pointer is optionally followed by a list of
commands for deletion/replacement/adjunction of nodes

Manuscript received July 22, 2008. Manuscript accepted for publication
October 30, 2008.

Nadia Luiza Dinca is with Research Institute for Artificial Intelligence,
Bucharest, Romania (hnadia_luiza@hotmail.com).

dominated by the node pointed to. The replaced or adjoined
elements are other matching expressions. The data
encapsulation of the translation examples is related to the
modularity demands of the sub-sequences that inherit the
features of the dominating units.

It is obviously that a machine translation system requires a
substantial amount of translation knowledge, typically
embodied in bilingual dictionaries, transfer rules, example
databases or statistical models. Our approach seeks to obtain
as much of this knowledge as possible by expressing
translation examples in LCS- dependency trees.

The real value of this LCS–Based Machine Translation is
offered by readability, since the machine captures the mental
models of any language and therefore, isolates the
correspondence links between the translation units.

II. LEXICAL CONCEPTUAL STRUCTURE
Traditionally, a translation example contains three parts:

- Dependency tree, adapted for the source language;
- Dependency tree, created for the target language;
- Correspondence links.

In this paper, the dependency trees are replaced with lexical
conceptual structures, built by hand, for English-Romanian
linguistic project. We have isolated pairs of verbs, extracted
from Orwell’s “1984” parallel English-Romanian texts.

The verbs were characterized from the point of view of
syntagmatic and paradigmatic relations, using the verb classes
and alternations described by Levin [3] and Visdic [4], using a
multilingual ontology editor.

The semantic properties of a lexical item are totally
reflected in a number of relations associated to different types
of contexts. These affinities developed by a word regarding a
context are syntagmatic or paradigmatic. Lexical semantic
relations are essentially paradigmatic, even if they can be
combined directly with or be based on, some analytical
elements or expression of properties, as in WordNet.

According to [5], a lexical conceptual structure is a directed
graph with a root, where each root is associated with a special
kind of information, including a type, a primitive and a field.
The types name are Event, Path, Manner, Property, Thing; the
fields refer to Locational, Possessional, and Identificational
values. The primitive of a LCS node is splitted into structural
primitive (e.g., go, cause, act) and constants (e.g., reduce+ed,
slash+ingly, face+ut, caine+este). For example, the top node
in the root LCS of the verb follow (“the eyes follow you”) has
the structural primitive ACT_ON in the locational field. Its
subject is a star-marked LCS with the restriction of being a
type thing. The number “1” specifies the thematic role of the

Modeling a Quite Different Machine Translation
using Lexical Conceptual Structure

Nadia Luiza Dinca

T

27 Polibits (38) 2008

agent. The second child node is an argument position and
needs to be of type thing, too; its number “2” represents the
clue of the theme:

 (DEF_WORD: “follow”
 LCS: (act_on loc (* thing 1) (* thing 2)))

The format for thematic roles is the following:
1. Any thematic role preceded by an underscore (_) is

obligatory.
2. Any thematic role preceded by a comma (,) is optional.
3. Prepositions inside parentheses indicate that the

corresponding phrases must necessarily be headed by the
specified prepositions.

4. An empty set of parentheses () indicates that there
necessarily must be a prepositional head, but it is left
unspecified.

5. The difference between the main communication and the
incident constructions referring to a second level of speech is
marked by indices “1” for the first level, and “2” for the
second one.

In the notation we used, the DEF_WORD, THEM_ROLES
and LCS represent the Dorr’s description attributes [2], [6].
We added TE, CLASS, SYNSET attributes with the values of
translation equivalent, semantic and synonymic classes. The
LCS specifies a star marker (*) for very explicitly realized
argument and modifier. The star marker forces logical
constituents to be realized compositionally at different levels.

Consider the sentence (1a). This can be represented as
shown in (1b), glossed as (1c):

1a. I walk to cinema.
1b. (event go loc
 (thing I+)
 (path to loc
 (thing I+)
 (position at loc (thing I+) (thing cinema+)))
 (manner walk +ingly))
1c. ‘I move (location) to the cinema in a walking manner.’

The next figure shows the lexicon entry for the contextual
sense of the English verb ‘walk’ with several pieces of
information, such as the root form of the lexical item, its
translation equivalent, the semantic verb class and the synset,
introduced by the fields: DEF_WORD, CLASS, SYNSET and
TE. The thematic roles appearing in the root LCS entry are
classed in a canonical order that reflects their relative surface
order: first available in this case is theme, with the obligatory
specification; the last two optional roles are source and goal:

(DEF_WORD: “walk”
TE: “merge”
CLASS: “51.3.2”
SYNSET: “walk: 4”, “jog: 3”,
 “run: 29”
THEM_ROLES: “_th ,src() ,goal()”
LCS: (event go loc (* thing 2)
 ((* path from 3) loc (thing 2)
 (position at loc (thing 2) (thing 4)))

 ((* path to 5) loc (thing 2)
 (position at loc (thing 2) (thing 6)))))

The field LCS introduces the uninstantiated LCS
corresponding to the underlying meaning of the word entry in
the lexicon. The top node for ‘walk’ has the structural
primitive go in the locational field. Its subject, marked with a
star “*”, indicates that the node must be filled recursively with
other lexical entries during semantic composition. The only
restriction is that the filler must be of type ‘thing’. The second
and third child nodes are in argument positions filled with the
primitives FROM and TO; the numbers 3 and 5 mark the
source and goal particle; the numbers 4 and 6 stand for source
and goal.

III. LEXICAL CONCEPTUAL STRUCTURE-BASED MACHINE
TRANSLATION

The main problem concerning an Example-Based Machine
Translation is how to use a translation example for translating
more than one source sentence. The solution described here
uses the lexical conceptual structure as a representation of
traditional dependency relationships. The words are
introduced in the dictionary with the specification of semantic
class, the synset and LCS –for the verb lexical entry– and with
the notation of thematic roles and LCS, for all other parts of
speech lexical entries (i.e., nouns, pronouns, numbers,
adverbs, adjectives, prepositions).

The basic properties of LCS are: idempotence, reflexivity
and compositionality:
- Idempotence: a LCS multiplied by itself, gives itself

as a result. For example, the root LCS for “follow”
can combine with any members of the semantic class
“51.6” (“watch: 2”, “observe: 7”, “follow: 13”) and
the resulted LCS has the same characteristics as the
original one.

- Reflexivity means the act of self-reference. For
example, the LCS created for the verb “divide” can
refer to any members of the synset “divide: 1”, “split:
1”, “split up: 2”, “separate: 4”, “dissever: 1”, “carve
up: 1”).

- Compositionality states that the meaning of a
complex expression is determined by the meanings of
its constituent expressions and the rules used to
combine them. It can be considered the most
important property because it allows to a translation
equivalent to be used in order to translate more than
one source sentence.

Let’s consider the translation of the following sentence:
(1) He dipped the pen into the ink.
 If the translation database contains the translation examples

(2) and (3), then we can translate sentence (1) into (4) by
imitating examples and combining fragments of them:

(2) He dipped the pen into the blue liquid.
 El isi inmuie penita in lichidul albastru.
(3) I bought an ink bottle.
 Eu am cumparat o cutie cu cerneala.
 (4) El isi inmuie penita in cerneala.

28Polibits (38) 2008

Nadia Luiza Dinca

Formally, a translation example consists of three parts:
- Source LCS-tree (ELCS; English Lexical

Conceptual Structure);
- Target LCS-tree (RLCS; Romanian Lexical

Conceptual Structure);
- Correspondence links.

Each number prefixed by “e” or “r” represents the identifier
of the sub-tree and each node in a tree contains a word (in root
form), a thematic role and its corresponding part of LCS. A
correspondence link is represented as a pair of identifiers.

If the translation of an identical sentence is not available in
the bilingual corpus, the EBMT system makes use of some
sort of similarity metric to find the best matching translation
examples. Suitable sub-sequences are iteratively replaced,
substituted, modified or adapted in order to generate the
translation. While the replacement, substitution, modification
or adaptation is rule-driven, the mapping of a source segment
into an equivalent target segment is guided from translation
examples.

According to [1], the concept matching expression (ME) is
defined as in the following:

<ME> ::= [<ID> | <ME - Commands>]
<ME – Commands> ::=
 []
or [<ME – Command> | <ME – Commands>]
<ME – Command> ::=
 [d, <ID>] %% delete <ID>
or [r, <ID>, <ME>] %% replace <ID> with <ME>
or [a, <ID>, <ME>] %% add <ME> as a child of

 root node of <ID>

Under these assumptions, the LCS trees (a) can be
represented by the matching expression (b):

(a) elcs_e ([e11, [dip, cause],
 // TE1

 [e12, [he, _ag, (* thing 1)]],
 [e13, [pen, _th, (go loc (* thing 2))]],
 [e14, [into, _goal (into), ([into] loc (thing 2))],
 [e15, [liquid, _goal (into), (thing 6)]
 [e16, [blue, _goal (into), (thing 6)]]]])

 rlcs_e ([r11, [inmuia, cause],
 [r12, [el, _ag, (* thing 1)]],
 [r13, [penita, _th, (go loc (* thing 2))]],
 [r14, [in, _goal (in), ([in] loc (thing 2))],
 [r15, [lichidul, _goal (into), (thing 6)]
 [r16, [albastru, _goal (into), (thing 6)]]]

 %% clinks: ([e11, r11], [e12, r12], [e13, r13], [e14, r14],

[e15, r15])

 elcs_e ([e21, [buy, cause_exchange],

 // TE2
 [e22, [I, _ag, (* thing 1)]],
 [e23, [bottle, rec, (go poss (* thing 2))],

 [e24, [ink, _th, (go poss (* thing 2))]]]])

 rlcs_e ([r21, [cumpara, cause_exchange]
 [r22, [Eu, _ag, (* thing 1)]],
 [r23, [cutie, rec, (go poss (* thing 2))],
 [r24, [cerneala, _th, (go poss (* thing 2))]]]])

%% clinks: ([e21, r21], [e22, r22], [e23, r23], [e24, r24])

(b) [e11, [(r, e15, [e24]), (d, e16)] // for source language

The first step is matching fragments of the input sentence
He dipped the pen into the ink against a database of real
examples. Two sequences can be found: he dipped the pen
into the and ink, respectively. The data encapsulation of the
translation unit provides a kind of logical independence of the
sub-sequences. Therefore, the complex translation unit, i.e.,
the entire sentence, is splitted into two sub-units; the first sub-
unit encapsulates the second sub-sequence ‘into the’, while the
last has lexicalized only the head and the specifier, and it waits
for the noun corresponding to the input modifier.

TE1 joins TE2 and the result matches against the input only
if the result has the same structure as the source sentence and
its arguments have values for the same type, primitive and
field as the input. The inheritance develops translation sub-
units incrementally through defining new objects in terms of
one previously object defined. It is applied only from noun to
adjective, from preposition to noun, and the inherited features
allow the matching by literals, instead of complex translation
units.

In the example above, the preposition node for into requires
a daughter node with the feature tuple (_goal (into), (thing
6)), instantiated by the lexical items black liquid. Also, the
item ‘black’ lexicalizes the daughter node of the noun ‘liquid’
and it inherits its feature tuple. The inheritance is possible only
if the selected literal has the same type as the input needed to
match. The LCS-tree created for the second translation
example shows the value of theme for the bi lexeme ‘ink
cerneala’ and the type ‘thing’, so the literal is corresponding
to the input word.

In the transfer step, the system replaces every identifier in
the source matching expression with its corresponding
identifier:

SME= [e11, [r, e15, [e24]]
TME= [r11, [r, r15, [r24]

In the composition step, the lexical conceptual structure-
tree is composed according to the target matching expression:

TME = [r11, [r, r15, [r24]]
TLCS= ([r1, [inmuia, cause],

 [r2, [el, _ag, (* thing 1)]],
 [r3, [penita, _th, (go loc (* thing 2))]],

 [r4, [in, _goal (in), ([in] loc (thing 2))],
 [r5, [cerneala, _goal (into), (thing 6)]]]])
%% El isi inmuie penita in cerneala.

IV. DISCUSSION
The EBMT idea is to translate by analogy [7], [8]. But what

is happening when the translator finds only a synonym of a

29 Polibits (38) 2008

Modeling a Quite Different Machine Translation using Lexical Conceptual Structure

given input, instead of its matching in different associations?
In our opinion, the solution is to consider a new mental model
as we explain below.

Any translation means to acquire new knowledge about the
real world by taking into consideration the older knowledge
organized into mental schemata by the system. The synonymy
relation, the classification into semantic verb classes, the verb
arity and the thematic roles, the lexical-semantic
representation in terms of primitive, fields and types- all
represents mental schemata corresponding to different levels
of the linguistic representation [9], [10]. Each of these
schemata identifies distributed information and a starting point
in understanding, learning and transferring the code from a
source language to a target language.

When the system confronts with a new situation, i.e., the
presence of a synonym, instead of its matching, it must unify
all the distributed schemata and organize them into a new
mental model, which is, in our case, the lexical conceptual
structure tree representation of the translation examples.
Therefore, while the schemata are generic pre-compiled
knowledge structures, the mental models are specific
knowledge structures, built in order to figure a new situation
using this generic knowledge.

Lexical forms written in the example side may be a
synonym for the matched input word and we must modify the
input side before constructing a target structure. The matching
is analogue to a reasoning issue in natural language, where an
unknown word is translated depending on the associations
with known items, participants in the same kind of context and
used as pointers for the semantic interpretation of the item
given.

Usually, the context acceptance means the words which
occur with a lexical item in order to disambiguate it
semantically. For this approach, the context refers to the
semantic class and synonymy relation of the verb given in the
lexical entry (e.g., the context of jog is the class “51.3.2.” and
the synset “run: 29, jog: 3, walk: 4, zigzag: 1, jump: 1, roll:
12”, instantiated for the sentence John jogged to school).
Formally, the source verb “a” may be translated into the target
verb “b” when:

a. there is the appropriate equivalent in the translation
database;

b. there is a source verb “c” which is:
b.1. in a synonymy relation with “a”;
b.2. in the same semantic verb class with “a”;
b.3. the translation equivalent of “a”.
The following example shows how to obtain a translation if

the system has a translation example and its context:

Input Sentence: He runs to school.
Translation Example:

He jogs to school = El alearga la scoala.
Context:
jog: 3= run: 29
jog: <- class “51.3.2.”
jog: (synset) <- (run: 29, jog: 3, walk: 4, zigzag: 1, jump: 1,

roll: 12)

Target Sentence: He runs to school = El alearga la scoala.

Even LCS is not a deep knowledge representation; it

captures the semantics of a lexical item through a combination
of semantic structure (which is something the verb shares with
a semantic verb class) and semantic content (which is specific
to the verb itself). The semantic structure relies also on the
subcategorization level of linguistic representation by the fact
that there are three ways a child node relates to its parents: as a
subject (maximally one), as an argument, or as a modifier.
Considering this relation between different levels of linguistic
representation, I can define a well-formedness principle for
LCS-based MT:

A translation is well-formed if:
i. There is an appropriate equivalent in the

database examples;
ii. There is an appropriate context (semantic verb

class and synset) for the input verb;
iii. The LCS children are lexicalized (if there is one

minimally) and associated with information
including a type, a primitive and a field.

The type of the LCS created for ‘give’ is Event, its
structural primitive is go, which appears in many generalized
movements, and the field which specifies the domain is
Possessional. The thematic roles are organized into the grid:
"_ag_th_goal(to)". If the sentence contains a form which
doesn’t fill all the values of LCS, it won’t be lexicalized and
the sentence won’t be generated:

Input: He gives.
TE1: He gives fruits to children. El da fructe copiilor.
TE2: He buys a kilo of fruits. El cumpara un kilogram de

fructe.
LCS _input :
 ((cause (* thing 1)
 (go poss (* nill)
 ((* to 5) poss (nill) (at poss (nill) (nill))))
 (give+ingly 26))

V. CONCLUSION AND FUTURE WORK
The LCS-Based Machine Translation can be a powerful

linguistic tool because it allows clear readability of the results.
Since the information contained in these lexical conceptual
structures is language-independent, we consider them an
interesting issue to capture the core of a machine translation,
which is not centered on any particular pair of language.

In fact, the LCS-Based Machine Translation has the
behavior of a complex adaptive system, which means:

- Patterns of activity: the linguist has to describe the
LCS for every verb, considered a lexical entry in
translation database;

- Self-organization: the structure receives a holistic
interpretation, including a type, a primitive and a
field;

- Collective behavior: the verbal core is extended, so
that the root LCS accepts all the verbs which respect
the same semantic class.

30Polibits (38) 2008

Nadia Luiza Dinca

In conclusion, this paper aims to present the improvement
of readability of an Example-Based Machine Translation in
terms of lexical conceptual structure. It is only a beginning of
a more profound study that will be developed in order to
characterize a machine translation without the old centering on
the particular pair of languages – source and target languages.

The future work involves the following practical tasks of
investigation:

1. Creating LCS-lexicons by taking the most frequent
verb pairs in “1984” corpus, Romanian and English
versions (with a frequency threshold of 5 occurrences,
minimally).

2. Considering French as a new language for translation
and creating also LCS-tree representations.

3. Organizing the LCS-trees of English, Romanian and
French languages into new mental models using the
encapsulation and a top ontology. We will try to
reduce the language differences and to isolate the
neutral linguistic core of any mental model,
corresponding to the real world.

REFERENCES
[1] S. Satoshi and M. Nagao. Toward Memory- Based Translation.

In: Proceedings of the 13th conference on Computational
linguistics, Finland: Helsinki, 1990, pp. 247-252.

[2] B. J., Dorr. LCS VerbDatabase, Online Software Database of
Lexical Conceptual Structures and Documentation.
http://www.umiacs.umd.edu/~bonnie/LCS_Database_Documentat
ion.html

[3] B. Levin. English Verb Classes and Alternations - A Preliminary
Investigation. The University of Chicago Press, 1993.

[4] http://nlp.fi.muni.cz/projekty/visdic/
[5] A. N. Fazil and B. J. Dorr. Generating a Parsing Lexicon from an

LCS-Based Lexicon. In: Proceedings of the LREC-2002
Workshop on Linguistic Knowledge Acquisition and
Representation, Spain: Las Palmas, 2002, pp. 43-52.

[6] H. Nizar, B. J. Dorr and D. Traum. Hybrid Natural Language
Generation from Lexical Conceptual Structures. Machine
Translation, 18:2, 2003, pp. 81—128

[7] M. Carl and A. Way (eds.) Recent Advances in Example-Based
Machine Translation. Kluwer Academic Publishers, 2003.

[8] H. Tanaka. Verbal case frame acquisition from a bilingual corpus:
gradual knowledge acquisition. In: Proceedings of the 13th
conference on Computational linguistics, Kyoto, Japan, 1994, pp.
727-731.

[9] R. Green, B. J. Dorr and Ph. Resnik. Inducing Frame Semantic
Verb Classes from WordNet and LDOCE. In: Proceedings of the
Association for Computational Linguistics, Barcelona, Spain,
2004, pp. 96-102.

[10] A. N. Fazil and B. J. Dorr. Generating A Parsing Lexicon from
an LCS-Based Lexicon. In: Proceedings of the LREC-2002
Workshop on Linguistic Knowledge Acquisition and
Representation, Las Palmas, Canary Islands, Spain, 2002, pp. 43-
52.

31 Polibits (38) 2008

Modeling a Quite Different Machine Translation using Lexical Conceptual Structure

32Polibits (38) 2008

Abstract—Named entities are perhaps the most important
indexing element in text for most of the information extraction
and mining tasks. Construction of a Named Entity Recognition
(NER) system becomes challenging if proper resources are not
available. Gazetteer lists are often used for the development of
NER systems. In many resource-poor languages gazetteer lists of
proper size are not available, but sometimes relevant lists are
available in English. Proper transliteration makes the English
lists useful in the NER tasks for such languages. In this paper, we
have described a Maximum Entropy based NER system for
Hindi. We have explored different features applicable for the
Hindi NER task. We have incorporated some gazetteer lists in
the system to increase the performance of the system. These lists
are collected from the web and are in English. To make these
English lists useful in the Hindi NER task, we have proposed a
two-phase transliteration methodology. A considerable amount
of performance improvement is observed after using the
transliteration based gazetteer lists in the system. The proposed
transliteration based gazetteer preparation methodology is also
applicable for other languages. Apart from Hindi, we have
applied the transliteration approach in Bengali NER task and
also achieved performance improvement.

Index Terms—Gazetteer list preparation, named entity
recognition, natural language processing, transliteration.

I. INTRODUCTION
amed entity recognition is a subtask of information
extraction that seeks to locate and classify the proper
names in a text. NER systems are extremely useful in

many Natural Language Processing (NLP) applications such
as question answering, machine translation, information
extraction and so on. NER systems have been developed for
resource-rich languages like English with very high
accuracies. But construction of an NER system for a resource-
poor language is very challenging due to unavailability of
proper resources.

English is resource-rich language containing lots of
resources for NER and other NLP tasks. Some of the

Manuscript received July 10, 2008. Manuscript accepted for publication

October 22, 2008.
Sujan Kumar Saha is with Department of Computer Science and

Engineering, Indian Institute of Technology, Kharagpur, India (email:
sujan.kr.saha@gmail.com).

Partha Sarathi Ghosh is with HCL Technologies, Bangalore, India (email:
partha.silicon@gmail.com).

Sudeshna Sarkar is with Department of Computer Science and
Engineering, Indian Institute of Technology, Kharagpur, India (email:
shudeshna@gmail.com).

Pabitra Mitra is with Department of Computer Science and Engineering,
Indian Institute of Technology, Kharagpur, India (email: pabitra@gmail.com).

resources of English language can be used to develop NER
system for a resource-poor language. Also English is used
widely in many countries in the world. In India, although there
are several regional languages like Bengali, Hindi, Tamil,
Telugu etc., English is widely used (also as subsidiary official
language). Use of the Indian languages in the web is very little
compared to English. So, there are a lot of resources on the
web, which are helpful in Indian language NLP tasks, but they
are available in English. For example, we found several
relevant name lists on the web which are useful in Hindi NER
task, but these are in English. It is possible to use these
English resources if a good transliteration system is available.

Transliteration is the practice of transcribing a word or text
in one writing system into another. Technically most
transliterations map the letters of the source script to letters
pronounced similarly in the goal script. Direct transliteration
from English to an Indian language is a difficult task. As our
primary objective is to make the available English gazetteer
lists useful for the Hindi NER task, we propose a two-phase
transliteration, which is capable to do that.

The transliteration module uses an intermediate alphabet,
which is designed by preserving the phonetic properties. The
English names in the name lists are transliterated to the
intermediate alphabet. A Hindi word, when it needs to be
checked whether it belongs to a gazetteer list, is also
transliterated into the intermediate alphabet. For an English-
Hindi word pair, if their transliterated intermediate alphabet
strings are the same, then we conclude that the English word
is the transliteration of the Hindi word.

In this paper, we have identified suitable features for Hindi
NER task. These features are used to develop a Maximum
Entropy (MaxEnt) based Hindi NER system. The highest F-
value achieved by the MaxEnt based system is 75.89. Then
the transliteration based gazetteer lists are incorporated in the
system and F-value is increased to 81.12. The improvement in
accuracy demonstrates the effectiveness of the proposed
transliteration approach.

The proposed transliteration module is applicable to other
languages also. We have chosen another language Bengali and
applied the transliteration approach for using the English
gazetteers in Bengali NER task. Also in Bengali, the addition
of the transliteration based gazetteer lists increases the
accuracy.

The paper is structured as follows. Varios NER techniques
and transliteration systems for different languages are
discussed in Section II. In Section III, the architecture of the
MaxEnt based Hindi NER system is presented. Then two-

Sujan Kumar Saha, Partha Sarathi Ghosh, Sudeshna Sarkar, and Pabitra Mitra

Named Entity Recognition in Hindi
using Maximum Entropy and Transliteration

N

33 Polibits (38) 2008

phase transliteration system is discussed in Section IV. In the
next section, the prepared gazetteers and the corresponding
experimental results are discussed. The experiments on
Bengali NER are summarized in Section VI. Section VII
presents the overall discussion. Finally Section VIII concludes
the paper.

II. PREVIOUS WORK
There are a variety of techniques for NER. Two broadly

classified approaches to NER are:
− Linguistic approach and
− Machine learning based approach.

The linguistic approach is the classical approach to NER. It
typically uses rules manually written by linguists. Though it
requires a lot of work by domain experts, a NER system based
on manual rules may provide very high accuracy. There are
several rule-based NER systems, containing mainly
lexicalized grammar, gazetteer lists, and list of trigger words,
which are capable of providing F-value of 88-92 for English
[9], [13], [18].

The main disadvantages of these rule-based techniques are:
they require huge experience and grammatical knowledge on
the particular language or domain; the development is
generally time-consuming and sometimes changes in the
system may be hard to accommodate. Also, these systems are
not transferable, which means that one rule-based NER system
made for a particular language or domain, cannot be used for
other languages or domains.

The recent Machine Learning (ML) techniques make use of
a large amount of annotated data to acquire high-level
language knowledge. ML based techniques facilitate the
development of recognizers in a very short time. Several ML
techniques have been successfully used for the NER task.
Here we mention a few NER systems that have used ML
techniques.

‘Identifinder’ is one of the first generation ML based NER
systems which used Hidden Markov Model (HMM) [2]. By
using mainly capital letter and digit information, this system
achieved F-value of 87.6 on English. Borthwick used MaxEnt
in his NER system with lexical information, section
information and dictionary features [3]. He had also shown
that ML approaches can be combined with hand-coded
systems to achieve better performance. He was able to
develop a 92% accurate English NER system. Mikheev et al.
has also developed a hybrid system containing statistical and
hand coded system that achieved F-value of 93.39 [14].

Other ML approaches like Support Vector Machine (SVM),
Conditional Random Field (CRF), Maximum Entropy Markov
Model (MEMM) are also used in developing NER systems.
Combinations of different ML approaches are also used. For
example, we can mention a system developed by Srihari et al.,
which combined several modules, built by using MaxEnt,
HMM and handcrafted rules, that achieved F-value of 93.5
[17].

The NER task for Hindi has been explored by Cucerzan and
Yarowsky in their language independent NER which used
morphological and contextual evidences [5]. They ran their
experiments with 5 languages: Romanian, English, Greek,
Turkish and Hindi. Among these, the accuracy for Hindi was
the worst. For Hindi the system performance has F-value of
41.70 with very low recall 27.84% and about 85% precision.
A successful Hindi NER system is developed by Li and
McCallum using CRF with feature induction [12]. They
automatically discovered relevant features by providing a
large array of lexical tests and using feature induction to
automatically construct the features that mostly increase
conditional likelihood. In an effort to reduce overfitting, they
used a combination of a Gaussian prior and early stopping.
The training set consisted in 340 K words. Feature induction
constructed 9,697 features from an original set of 152,189
atomic features; many are position-shifted but only about 1%
are useful. Highest test set accuracy of their system is the F-
value of 71.50. The MaxEnt based Hindi NER system
developed by Saha et al. has achieved F-value of 80.01 [16].
The system has used word selection and word clustering based
feature reduction techniques to achieve this result.

Transliteration is also a very important topic and several
transliteration systems for different languages have been
developed using different approaches. The basic approaches
of transliteration are phoneme based or spelling-based. To
mention a phoneme-based statistical transliteration system
from Arabic to English is developed by Knight and Graehl
[10]. This system used finite state transducer that implemented
transformation rules to do back-transliteration. A spelling-
based model that directly maps English letter sequences into
Arabic letters is developed by Al-Onaizan and Knight [1].
There are several transliteration systems for English-Japanese
[8], English-Chinese [11], English-Spanish [4] and many
other languages to English.

But very few attempts were made to develop transliteration
systems for Indian languages to English or other languages.
We can mention a transliteration system for Bengali-English
transliteration developed by Ekbal et al. [7]. They have
proposed different models modifying the joint source channel
model. In that system a Bengali string is divided into
transliteration units containing a vowel modifier or matra at
the end of each unit. Similarly, English string is also divided
into units. Then various unigram, bigram or trigram models
are defined depending on consideration of contexts of the
units. Linguistic knowledge in the form of possible conjuncts
and diphthongs in Bengali and their representations in English
are also considered. This system is capable of transliterating
mainly person names. The highest transliteration accuracy
achieved by the system is 69.3% Word Agreement Ratio
(WAR) for Bengali to English and 67.9% WAR for English to
Bengali transliteration.

34Polibits (38) 2008

Sujan Kumar Saha, Partha Sarathi Ghosh, Sudeshna Sarkar, and Pabitra Mitra

III. MAXENT BASED HINDI NER SYSTEM
We have used MaxEnt classifier to develop the system.

Selection of an appropriate feature set is very important to
train a ML based classifier. As language resources and tools
are limited in Hindi, we have given the most importance to the
features. MaxEnt model has the capability to use different
features to compute the conditional probabilities.

In Hindi, there is no capitalization of letters to distinguish
proper nouns from other nouns. Capitalization is a very
important feature for English as most of the names are
capitalized. Due to absence of the capitalization feature, Hindi
NER task is difficult. Also, person names are more diverse in
Indian languages; many common words are used as names.

In the following sections we discuss the features that we
have identified and used to develop the Hindi NER system.

A. Feature Description
The features that we have identified for the Hindi NER task

are:
− Surrounding Words

As the surrounding words are very important to recognize a
NE, previous and next words of a particular word are used as
features. As a feature, previous m words (wi-m...wi-1) to next n
words (wi+1...wi+n) can be treated depending on the training
data size, total number of candidate features etc. During
experiment different combinations of previous four words to
next four words are used as features. These features are multi-
valued. For a particular word wi, its previous word wi-1 can be
any word in the vocabulary, which makes the feature space
very high. Such high-dimensional features do not work well if
amount of training data is not sufficient.

− Binary Word Feature
The multi-valued feature can be modified as a set of binary

feature to reduce the feature space. Class specific lists are
compiled taking the frequent words present in a particular
position. For example, for the previous word of the person
class, frequent words are collected in PrevPerson list. Such
lists are compiled for each class and each position (previous m
to next n). Now C binary features replace the word feature for
a particular position, where C is the number of classes. The
word in a particular position is checked whether it is in the
corresponding position list for a class or not. Firstly we have
prepared the lists blindly by taking the words occurring at
least four times in a particular position corresponding to a
class.

− Context Lists
The idea of binary word feature is used to define the class

context features. Context words are defined as the frequent
words present in a word window for a particular class. In our
experiment we have listed all the frequent words present
anywhere in wi-3...wi+3 window for a particular class. Then this
list is manually edited to prepare the context word list for a
class. For example, location context list contains roda (road),
rajdhani (capital), sthita (located in), jakar (going to) etc. The
feature is defined as, for a word wi, if any of its surrounding

words (wi-3...wi+3) is in a class context list then the
corresponding class context feature is 1.

− Named Entity Tags of Previous Words
Named entity (NE) tags of the previous words (ti-m...ti-1) are

used as feature. This feature is dynamic. The value of the
feature for wi is available after obtaining the NE tag of wi-1.

− First Word
If the word is the first word of a sentence, then this feature

is set to 1. Otherwise, it is set to 0.
− Containing Digit

If a word contains digit(s) then the binary feature
ContainsDigit is set to 1.

− Made up of 4 Digits
For a word w if all the characters are digits and having only

4 digits in w, then the feature fourDigit is set to 1. This feature
is helpful for identifying year. A little modification of the
feature might give better result. As in our development, we are
working in news domain, the years are limited to 1900-2100
in most cases. Then we have modified the feature as if it is a
four-digit word and its value is between 1900 and 2100 then
the feature value is 1.

− Numerical Word
If a word is a numerical word, i.e. it is a word denoting a

number (e.g. tin (three), char (four) etc.) then the feature
NumWord is set to 1.

− Word Suffix
Suffix information is useful to identify the named entities.

This feature can be used in two ways. The first and naive one
is that a fixed length word suffix of current and surrounding
words can be treated as feature. During evaluation, it was
observed that this feature is useful and able to increase the
accuracy by a considerable amount. Still, better approach is to
use suffix based binary feature. Variable length suffixes of a
word can be matched with predefined lists of useful suffixes
for different classes of NEs. Suffix list of locations is very
useful since most of the location names in India end with a
specific list of suffixes. Suffix list of locations contains 116
suffixes like, bad, pur, puram, ganj, dihi etc.

− Word Prefix
Prefix information of a word is also useful. A fixed length

word prefix of current and surrounding words can be treated
as feature.

− Parts-of-Speech (POS) Information
The POS of the current word and the surrounding words are

important to recognize names. For this task we have used the
POS tagger developed at IIT Kharagpur, India. The tagset of
the tagger contains 28 tags. Firstly we have used the POS
values of current and surrounding tokens as feature.

All 28 POS tags are not helpful in recognizing names.
Nominal and postpositional tags are the most important in
name finding in Hindi. Then we have modified the POS
tagger to a coarse-grained POS tagger which has only three
tags - nominal, postpositional (PSP) and others. These coarse
grained POS values of current and surrounding tokens are
more helpful for name recognition.

35 Polibits (38) 2008

Named Entity Recognition in Hindi using Maximum Entropy and Transliteration

The POS information is also used in another way. Some
binary features are defined using the POS information. For
example, a binary feature NominalPSP is defined as
following, if the current token is nominal and the next token is
a PSP then the feature is set to 1, otherwise 0.

B. Maximum Entropy Based Model
MaxEnt is a flexible statistical model which assigns an

output for each token based on its history and features.
MaxEnt computes the probability p(o|h) for any o from the
space of all possible outputs O, and for every h from the space
of all possible histories H. A history is all the conditioning
data that enables to assign probabilities to the space of output.
In NER, history can be viewed as all information derivable
from the training corpus relative to the current token wi. The
computation of p(o|h) depends on a set of features, which are
helpful in making predictions about the output.

Given a set of features and a training corpus, the MaxEnt
estimation process produces a model in which every feature fi
has a weight αi. We can compute the conditional probability
as [15]

if (h ,o)1(|)
() i

i

p o h
Z h

α= ∏ (1)

ιf (h ,ο)
ι() α

O i

Z h = ∑ ∏ (2)

The probability is given by multiplying the weights of
active features. The weight αi is estimated by a procedure
called Generalized Iterative Scaling (GIS) [6]. This method
improves the estimation of weights iteratively. The MaxEnt
estimation technique guarantees that, for every feature fi, the
expected value equals the empirical expectation in the training
corpus.

For our development we have used a Java based open nlp
MaxEnt toolkit1 to get the probability values of a word
belonging to each class. That is, given a sequence of words,
the probability of each class is obtained for each word. To
find the most probable tag corresponding to each word of a
sequence, we can choose the tag having the highest class-
conditional probability value.

Sometimes this method results in inadmissible assignment
for tags belonging to the sequences that never happen. To
eliminate these inadmissible sequences we have made some
restrictions. Then we have used a beam search algorithm with
beam length 3 with these restrictions. This algorithm finds the
most probable tag sequence from the class conditional
probability values.

C. Training Data
The training data used for this task contains of about 243 K

words with 16,482 NEs, which is collected from the popular
daily Hindi newspaper "Dainik Jagaran". In this development,
we have considered four types of NEs to recognize. These are
Person (Per), Location (Loc), Organization (Org) and Date.
To recognize entity boundaries, each name class N is
subdivided into four sub-classes, i.e., N_Begin, N_Continue,

1 www.maxent.sourceforge.net

N_End, and N_Unique. Hence, there are total 17 classes (4
name classes × 4 sub-classes + 1 not-name class). The corpus
contains 6,298 Person, 4,696 Location, 3,652 Organization
and 1,845 Date entities.

D. Evaluation
About 80 different experiments are conducted taking

several combinations from the mentioned features to identify
the best feature set for the NER task. We have evaluated the
system using a blind test file of size 25 K words, which is
totally different from the training file. The accuracies are
measured in terms of F-measure, which is weighted harmonic
mean of precision and recall. Precision is the percentage of the
correct annotations and recall is the percentage of the total
named entities that are successfully annotated. The general
expression for measuring the F-value is: Fβ = ((1 + β2)
(precision × recall)) / (β2 × precision + recall). Here the
value of β is taken as 1.

First of all, we have used only the current and surrounding
words as feature of MaxEnt. We have experimented with
several combinations of previous 4 to next 4 words (wi-

4...wi+4) to identify the best word-window. The results are
shown in Table I.

TABLE I.

RESULTS (F-MEASURE) OF MAXENT BASED SYSTEM USING WORD FEATURES
Feature Per Loc Org Date Total

wi, wi-1, wi+1 61.36 68.29 52.12 88.9 67.26

wi, wi-1, wi-2, wi+1, wi+2 64.10 67.81 58 92.30 69.09

wi, wi-1, wi-2, wi-3, wi+1, wi+2,
wi+3

60.42 67.81 51.48 90.18 66.84

wi, wi-1, wi-2, wi-3, wi-4, wi+1,
wi+2, wi+3, wi+4

58.42 64.12 47.97 84.69 61.27

wi, wi-1inList, wi-2inList,
wi+1inList, wi+2inList 65.37 70.33 47.37 83.72 66.17

From Table I we can observe that word window (wi-2...wi+2)

gives the best result. When the window size is increased, the
performance degrades. List based binary word features are not
effective. In the table, the notation wi-ninList is used to indicate
binary word features for all classes for wi-n. We have already
mentioned that the binary word feature matches the word if it
presents in a frequent word list which is formed from the
training corpus. By analyzing the word lists we have observed
that the lists do not contain all the words related to a class. For
example, the word ‘jakar’ (going to) in the next position helps
to conclude that the current word has high probability to be a
location name. But the word is ‘jakar’ is not in the
corresponding list because the word is not occurring in that
particular position with high frequency in our training corpus.
Manual editing of the lists might help the binary word feature
to perform better.

Similar experiments are conducted to find the best feature
set for the Hindi NER task. The features described earlier are
applied separately or in combination to build the MaxEnt

36Polibits (38) 2008

Sujan Kumar Saha, Partha Sarathi Ghosh, Sudeshna Sarkar, and Pabitra Mitra

based model. In Table II we have summarized the results.
Only the best values of each feature category are given in the
table. This result is considered as the baseline in this study.

TABLE II.

RESULTS OF MAXENT BASED SYSTEM USING DIFFERENT FEATURES

Feature Per Loc Org Date Total

words, previous NE tags 63.33 69.56 58.58 91.76 69.64

words, tags, prefix(≤4) 66.67 71 58.58 87.8 70.02

words, tags, suffix(≤4) 70 76.92 59.18 88.9 73.5

words, tags, suffix (≤4),
prefix(≤4)

70.44 70.33 59.18 90.18 72.64

words, tags, digit information 62.94 69.56 50 91.76 67.63

words, tags, suffix (≤4), digit 70.44 76.92 60.44 93.02 74.51

words, tags, POS (28 tags) 66.67 72.84 60 88.9 71.22

words, tags, POS(coarse-
grained) 69.62 80.74 58.7 91.76 75.22

words, tags, POS(coarse-
grained), suffix (≤4), digit 72.23 78.1 62.37 93.02 75.67

words, tags, ‘nominalPSP’,
suffix (≤4), digit 72.5 80.74 58.7 93.02 75.89

From the table we can observe that some of the features are

able to improve the system accuracy separately, but when
applied in combination with other features, they cause
decreasing of the the accuracy. For example, with the
information about the word and tag only we achieve F-value
of 69.64. When suffix information is added, F-value is
increased to 73.5 and when prefix information is added then
F-value of 70.02 is achieved. But when both the suffix and
prefix features are combined, then the F-value is 72.64. Prefix
information increases the accuracy alone, but when combined
with suffix information, it decreases the accuracy instead of
increasing it. More complex features do not guarantee the
better result. The best accuracy of the system is the F-value of
75.89, which is obtained by using current word, surrounding
words (wi-1, wi+1), previous NE tags, suffix information (≤4),
digit information (contains digit, four digit, numerical word)
and the POS based binary feature nominalPSP. Here an
interesting observation is, that the best feature set uses the
word window (-1 +1), i.e. one previous word and one next
word. Using the wider window reduces the performance,
though in Table I it was found that window (-2 +2) performs
best.

IV. GAZETTEER INFORMATION
Gazetteer lists or name dictionaries are helpful in NER. It is

observed that a huge number of organization names end with
some specific words like Inc., Corp., Limited etc. If all such
words can be collected in a list then they can help to recognize
the organization names. Again, it is very common that some
designations like prof., minister etc. and some other qualifiers
like Mr., Dr., Sri etc. appear before the name of a person. A
list containing all such words helps in person name

identification. A surname list is also helpful for identifying
person names. Similarly location list, organization list, first
name list etc. are some helpful gazetteer lists.

Gazetteer lists are successfully used in many English NER
systems. Borthwick’s ‘MENE’ has used 8 dictionaries [3],
which are: First names (1,245), Corporate names (10,300),
Corporate names without suffix (10,300), Colleges and
Universities (1,225), Corporate suffixes (244), Date and Time
(51) etc. The numbers in parentheses indicate the size of the
corresponding dictionaries. As another example, we can
mention the hybrid system developed by Srihari et al. (2000).
The gazetteer lists used in the system are: First name (8,000),
Family name (14,000) and a large gazetteer of Locations
(250,000). There are many other systems which have used
name dictionaries to improve the accuracy.

Being influenced by these systems, we have decided to use
gazetteer lists in our system. We have planned to use a few
gazetteer lists like, person prefix, corporate suffix, surname,
first name, location etc.

Initially we have attempted to prepare the gazetteers from
the training corpus. Comparing with similar English
dictionaries, it seems that prepared dictionaries might be
sufficient for person prefix words, organization suffix words
etc. but person first name list, location list etc. are not
sufficient for the Hindi NER task. Then we have attempted to
use the web sources for creating large gazetteer lists.

As our goal is to develop a NER system for Hindi, we are
mainly interested in preparing gazetteers, which will contain
mainly places in India, Indian first names and Indian
surnames. For that purpose, we have collected the names from
several websites. Mainly we have explored some Indian baby
name websites to prepare the first name list. Also a lot of
names of non-Indian famous personalities who are likely to
appear in Indian news, collected from several sources, are
added to the first name list. Similarly, we have prepared the
location dictionary using Indian telephone directory, postal
websites and the web encyclopedia ‘wikipedia’. In Table III,
we have mentioned the main sources from which we have
collected the names.

TABLE III.
SOURCES OF GAZETTEER LISTS

Gazetteer Sources
First name http://hiren.info/indian-baby-names

http://indiaexpress.com/specials/babynames
http://www.modernindianbabynames.com/

Surname http://surnamedirectory.com/surname-index.html
http://en.wikipedia.org/wiki/Indian_name
http://en.wikipedia.org/wiki/List_of_most_common_surn
ames

Location http://indiavilas.com/indiainfo/pincodes.asp
http://indiapost.gov.in
http://maxmind.com/app/worldcities
http://en.wikipedia.org/wiki

A. Transliteration
The transliteration from English to Hindi is very difficult.

English alphabet contains 26 characters whereas the Hindi
alphabet contains 52 characters. So the mapping is not trivial.
We have already mentioned that Ekbal et al. [7] has

37 Polibits (38) 2008

Named Entity Recognition in Hindi using Maximum Entropy and Transliteration

developed a transliteration system for Bengali. A similar
approach can be used to develop a Hindi-English
transliteration system. But it requires a bilingual transliteration
corpus, which needs huge efforts to built, is unavailable to us.
Also using this approach the word agreement ratio obtained is
below 70%, which is not a good value for the task.

To make the transliteration process easier and more
accurate, we propose a 2-phase transliteration module. As our
goal is to make decision that a particular Hindi string is in
English gazetteer or not, we need not transliterate the Hindi
strings in English or English strings into Hindi. Our idea is to
define an intermediate alphabet. Both the English and Hindi
strings will be transliterated to the intermediate alphabet. For
two English-Hindi string pair, if the intermediate alphabet is
same then we can conclude that one string is the transliteration
of the other.

First of all we need to decide the alphabet size of the
intermediate state. When several persons write a Hindi name
in English, all the English string may not be same. For
example a Hindi name “surabhii” when written in English,
may be written as several ways, like surabhi, shurabhi, suravi,
suravee, shuravi etc. So, it is very difficult to transliterate
properly. Preserving the phonetic properties we have defined
our intermediate alphabet consisting of 34 characters. To
indicate these 34 characters, we have given unique character-
id to each character which ranges from 51# to 84#. As special
characters and digits are very rare in person and location
names, all the special characters are mapped to a single
character with character-id 99# and all the digits are mapped
to 98#.

B. English to Intermediate Alphabet Transliteration
For transliterating English strings into the intermediate

alphabet, we have built a phonetic map table. This map table
maps an English n-gram into an intermediate character. A few
entities of the map table are shown in Table IV.

TABLE IV.

A PART OF THE MAP-TABLE
English Intermediate English Intermediate
A 51# EE, I 53#
OO, U 54# B, W 55#
BH, V 56# CH 57#
R, RH 76# SH, S 77#

The procedure of transliteration is as follows.

Procedure 1: Transliteration English-Intermediate
Source string – English, Output String – Intermediate.

1. Scan the source string (S) from left to right.
2. Extract the first n-gram (G) from S. (n = 4)
3. Search it in the map-table.
4. If it is found, insert its corresponding intermediate

state entity (I) into target string M. M M + I.
Remove G from S. S S – G.
Go to step 2.

5. Else, set n = n – 1.
Go to step 3.

Using this procedure, English string ‘surabhii’ will be
transliterated to 77#54#76#51#56#53#. If we check the
transliteration for ‘shuravi’, it is transliterated into
intermediate string in the same manner.

C. Hindi to Intermediate Alphabet Transliteration
This is done in two steps. At the first step, the Hindi strings

(which are in Unicode) are transliterated into itrans. Itrans is
representation of Indian language alphabets in terms of
ASCII. Since Indian text is composed of syllabic units rather
than individual alphabetic letters, itrans uses combinations of
two or more letters of English alphabet to represent an Indian
language syllable. However, there are multiple sounds in
Indian languages corresponding to the same English letter and
not all Indian syllables can be represented by logical
combinations of English alphabet. Hence, itrans uses some
non-alphabetic special characters also in some of the syllables.
The difficulty in converting the Unicode Hindi string to itrans
is that the conversion mapping of Unicode to itrans is many to
one. A map table2, with some heuristic knowledge, is used for
the transliteration. Our example Hindi word ‘surabhii’ is
converted into ‘sUrabhI’ in itrans.

At the next step, the itrans string is transliterated into the
intermediate alphabet using a similar procedure of
transliteration. Here we use a similar map-table containing the
mappings from itrans to intermediate alphabet. This procedure
will transliterate the example itrans word ‘sUrabhI’ to
77#54#76#51#56#53#.

D. Accuracy of the Transliteration System
The transliteration system is evaluated by using a bilingual

corpus containing 1,070 English-Hindi word pairs most of
which are names. 980 of them are transliterated correctly by
the system. So, the system accuracy is 980×100/1070 =
91.59%.

This transliteration approach is applicable for some other
languages also.

V. USE OF GAZETTEER LISTS IN MAXENT BASED HINDI NER
We have prepared the gazetteer lists directly from the

corpus or from the web using the transliteration process
discussed in the above section. The lists collected from the
web are transliterated and stored in the intermediate form. One
way of using the gazetteer information is to directly search a
token if it is in the list. If it is present then we make the
decision that the word belongs to that particular class. But this
cannot resolve ambiguity as a particular token may present in
more than one list and confusion arises. We have used the
gazetteer information as a feature of MaxEnt. In the following
we have described the prepared gazetteer lists and the
corresponding features in details.

2 www.aczoom.com/itrans

38Polibits (38) 2008

Sujan Kumar Saha, Partha Sarathi Ghosh, Sudeshna Sarkar, and Pabitra Mitra

A. Gazetteer Lists
− Month name, Days of the Week

If the word is one of January, February, . . ., December,
(baishakh, jyashtha, . . ., chaitra (month names of Hindi
calendar)), then the feature MonthName is set to 1. If it is one
of Monday, Tuesday, . . ., Sunday (sombar, mangalbar, . . .,
rabibar,..) then the feature DayWeek is set to 1.

− Corporate Suffix list
Corporate Suffix List (CSL) contains most frequently

occurring last words of organization names collected from the
training data. CSL is made up of limited, corp., inc, institute,
university etc. The size of the list is 92 entries. For a word wi,
if any of the words from wi+1 to wi+ n is in CSL, then a feature
CorpSuf is set to 1.

− Person Prefix List
It contains the designations and qualifiers that occur before

person names and are collected from the training data.
Examples of some prefixes are, sri (Mr.), kumari (mrs.),
mantri (minister), adhyaksha (chairman) etc. The list contains
123 prefixes.

Note that person prefix words are not the part of the person
names, while corporate suffixes are part of the organization
names. For a word wi, if any of the words from wi-m to wi-1 is
in person prefix List, then a feature PerPref is set to 1.

− Common Location
This list contains the words denoting common locations.

Common location words like jila (district), nagar (town/city),
roda (road) etc. have high probability to occur at the end of a
location name. 70 such words are collected in the Common
Location List (CLL). Then the binary feature ComLoc is
defined as, it takes value 1 for a word wi if its next word
presents in CLL.

− Location List
17,600 location names are gathered in the Location List

(LL). LL is converted using the transliteration and stored in
intermediate form. LL is processed into a list of unigrams
(e.g., Kolkata, Japan) and bigrams (e.g., New Delhi, New
York). The words are matched with unigrams and sequences
of two consecutive words are matched against bigrams to get
the feature value of the binary LocList feature.

− First Name List
This list contains 9,722 first names collected from the web.

Most of the first names are of Indian origin. The feature
FirstName is defined as, if the word wi is in the list, then the
feature is set to 1, otherwise 0.

− Middle Name List
A list is compiled containing the common middle names in

India, for example, kumar, chandra, nath, kanta etc. This list
contains 35 entries.

− Surname List
This is a very important list which contains surnames. As

our objective is to develop a Hindi NER, we are most
interested in Indian surnames. We have prepared the Surname
List (SL) from different sources containing about 1,500 Indian
surnames and 200 other surnames. A binary feature SurName
is defined according to whether the word is in SL.

B. Evaluation
In Table V, we have shown the results of the NER system

after incorporating the gazetteer lists. To observe the
effectiveness of the prepared gazetteer lists in Hindi NER, we
have added the lists with the baseline system.

TABLE V.

RESULTS OF MAXENT BASED SYSTEM USING GAZETTEER LISTS
Feature Per Loc Org Date Total

Baseline: words, tags,
suffix (≤4) 70 76.92 59.18 88.9 73.5

words, tags, suffix,
CorpSuf 70 78.1 72.3 88.9 76.92

words, tags, suffix,
DayWeek, monthName, 70 76.92 59.18 95.83 74.16

words, tags, suffix,
PersonPrefix 72.5 76.92 59.18 88.9 74.09

words, tags, suffix,
SurName, PerPref,

FirstName, MidleName
77.2 78.1 59.18 88.9 76.34

words, tags, suffix,
LocList, ComLoc 70 82.81 61.05 88.9 75.41

words, tags, suffix, all
gazetteers 75.86 81.29 74.8 95.83 80.2

Baseline: words, tags,
nominalPSP, suffix

(≤4), digit
72.5 80.74 58.7 93.02 75.89

words, tags,
nominalPSP, suffix,
digit, all gazetteers

77.2 82.81 76.35 95.83 81.12

To observe the changes in accuracy, we have selected two

feature sets from the baseline system (as in Table II): {current
word, surrounding words, previous NE tags, suffix≤4} and
{current word, surrounding words, previous NE tags,
suffix≤4, digit information, nominal PSP}. The first feature
set achieves F-value of 73.5 and the second one achieves F-
value of 75.89, which is the best baseline feature set.

After adding the gazetteer lists, F-value has increased to
80.2 for the first feature set and 81.12 for the second. Also
from the table we observe that the addition of a gazetteer list
for a particular class (Cj) mostly increases the accuracy of Cj.
For example, when the person gazetteer lists (e.g. person
prefix list, surname list, first name list etc.) are incorporated,
F-value of the person class has increased to 77.2 from 70.
Change in accuracy of the other classes is minor. The highest
F-value achieved by the developed Hindi NER system is
81.12.

VI. EXPERIMENTS ON BENGALI NER
The proposed two-phase transliteration approach is used

successfully to make the English gazetteer lists useful in the
Hindi NER task. The proposed approach is also applicable to
other resource-poor languages. To study the effectiveness of
the approach in another language we have chosen Bengali. As
Hindi and Bengali alphabets are very similar, we needed a

39 Polibits (38) 2008

Named Entity Recognition in Hindi using Maximum Entropy and Transliteration

little effort to transfer the transliteration module from Hindi to
Bengali.

Our primary objective is not to develop a ‘good’ Bengali
NER system, but to experiment the effectiveness of the
transliteration approach in Bengali NER task. We first
developed a Bengali NER system using a small training
corpus which is used as baseline. Then the transliteration
module is modified to make the collected English gazetteer
lists useful for the Bengali. These gazetteer lists are
incorporated in the system and the improvement in accuracy is
observed.

A. Training Corpus
The training corpus used for the Bengali NER task is much

smaller than the Hindi corpus. The corpus contains only 68 K
words. Three named entity classes are considered: Person,
Location and Organization. The corpus contains 1,240 person
names, 1,475 location names and 490 organization names.

B. Transliteration Module
Collected English gazetteer lists are then transliterated into

Bengali. English to intermediate alphabet transliteration of the
gazetteer lists is already done during the experiments in Hindi.
Using a Bengali map-table, the Bengali words are
transliterated to itrans. We have already mentioned that the
alphabets of Bengali and Hindi are similar, so the Hindi
module for the transliteration from itrans to intermediate is
used for Bengali without any modification.

The accuracy of the Bengali transliteration is measured
using a smaller bilingual test corpus containing 400 word
pairs. The accuracy of transliteration for Bengali is 89.3%.

C. Features for Bengali NER
The feature set used for the Bengali NER development is

mentioned in the following.
− Surrounding words (two previous and two next),
− NE tags of previous words,
− Affix information (all affixes up to a fixed length and

list based),
− Root information of the words,
− POS information.

Most of the features are used in similar ways as used in the
Hindi NER task. The feature root information is not used in
Hindi NER development, but it is very important in Bengali
NER. In Bengali, several affixes are often added to the names
inflecting them. For example, a person name “Sachin” is
inflected in Bengali as, sachinra (plural, the group in which
Sachin belongs to), sachiner (of Sachin), sachinke (to Sachin),
sachinda (brother Sachin), sachinbabu (Mr. Sachin) etc. As
these affixes are added to the names, sometimes identification
of inflected names becomes very difficult. To identify the
inflected names we have extracted the ‘root’ information of
the words and used them as features of MaxEnt. In Hindi,
such affixes generally present separately from the names as
‘postpositions’, so root information is not much useful.

D. Experimental Results
MaxEnt classifier is used for the experiments. The training

corpus and the mentioned features are used to develop the
baseline system. The system is evaluated using a test corpus
containing 10 K words. The baseline system has achieved the
highest F-value of 62.81. After that the transliteration based
gazetteer lists are incorporated. Then F-value of the system
has increased to 69.59. The results are summarized in Table
VI.

TABLE VI.

RESULTS OF THE BENGALI NER SYSTEM
Feature Per Loc Org Total

words, tags 56.9 56.13 56.67 56.55

words, tags, affix 58.01 59.05 57.28 58.24

words, tags, affix, root
information 62.21 60.46 57.94 60.6

words, tags, affix, root, POS
information 64.39 62.5 60.2 62.81

words, tags, affix, root, POS
information, all gazetteers 70.42 69.85 67.58 69.59

VII. DISCUSSION
Named entity recognition is an important task. ML based

approach for NER task requires sufficient annotated data to
build the system. Gazetteer lists are often used to increase the
performance of a NER system. For resource-rich languages,
such resources are available, but for resource-poor languages
these resources are scarce. Useful gazetteer lists are not
available in these languages, though sometimes they are
available in other languages (like English). If such lists are
transliterated from other language into the target language,
they become useful. We have proposed a two-phase
transliteration methodology for the task.

Direct transliteration is difficult, so we have proposed a
two-phase transliteration. Here an intermediate alphabet is
defined. The strings from both languages (say, Hindi and
English) are transliterated into the intermediate alphabet to
make the decision that a string (Hindi) is in the gazetteer lists
(English) or not. The main advantages of the proposed
approach are:

− This is a character-gram mapping based (using map-
tables) approach, where no training data (bilingual
corpora) is required.

− The approach is very simple and fast.
− This is easily transferable to other language.
− The accuracy of transliteration is high.

The disadvantages of the approach are:
− The English strings are not transliterated to the target

language. Here only the decision is taken whether a
target word (Hindi) is in the English name list or not.

− The module is specially built for the NER task. It is
not widely applicable to other NLP tasks.

The accuracy of transliteration is 91.59% for Hindi and
89.3% for Bengali. The major cases where the transliteration

40Polibits (38) 2008

Sujan Kumar Saha, Partha Sarathi Ghosh, Sudeshna Sarkar, and Pabitra Mitra

approach fails are, presence of homophones (pronounced
similarly but one word is name but the other is not-name),
word level changes (e.g., India is written as ‘bharat’ in Indian
languages, New Delhi as ‘nayi dilli’), dropping of internal
vowels (‘surabhi’ is sometimes written/pronounced as
‘surbhi’ – ‘a’ is dropped) etc.

Suitable features are identified and MaxEnt is used to build
the baseline NER systems for Hindi and Bengali using the
identified features. Baseline accuracies for Hindi and Bengali
are F-value of 75.89 and 62.81 respectively. A few gazetteer
lists are collected from the web, which are in English, are
incorporated in the system using the transliteration module
and performance improvement is observed. F-values are
increased to 81.12 for Hindi and 69.59 for Bengali. The
accuracy for Bengali is much lower compared to Hindi
because the training corpus size for Bengali is only 68 K
words, whereas in Hindi the corpus contains 243 K words.

VIII. CONCLUSION
ML based approach requires annotated data and other

resources to build a NER system. We have identified the
suitable features for the Hindi NER task. We observed that
some relevant gazetteer lists, which are very useful for
improving the performance of the NER system, are available
in English. To make the English name lists useful for Hindi,
we have proposed a two-phase transliteration methodology.
The available English gazetteer lists are used successfully in
the Hindi NER system using the proposed transliteration
approach. We have also examined the effectiveness of the
transliteration approach on Bengali NER task.

Use of larger training data would increase the overall
accuracy of the system. Also we hope that use of larger
gazetteer lists will increase the accuracy of the system.

REFERENCES
[1] Al-Onaizan Y. and Knight K. 2002. Machine Transliteration of Names

in Arabic Text. In: Proceedings of the ACL Workshop on Computational
Approaches to Semitic Languages.

[2] Bikel D. M., Miller S, Schwartz R and Weischedel R. 1997. Nymble: A
high performance learning name-finder. In: Proceedings of the Fifth
Conference on Applied Natural Language Processing, pp. 194-201.

[3] Borthwick A. 1999. A Maximum Entropy Approach to Named Entity
Recognition. Ph.D. thesis, Computer Science Department, New York
University.

[4] Crego J. M., Marino J. B. and Gispert A. 2005. Reordered Search and
Tuple Unfolding for Ngram-based SMT. In: Proceedings of the MT-
Summit X, Phuket, Thailand, pp. 283-289.

[5] Cucerzan S. and Yarowsky D. 1999. Language independent named
entity recognition combining morphological and contextual evidence. In:
Proceedings of the Joint SIGDAT Conference on EMNLP and VLC
1999, pp. 90-99.

[6] Darroch J. N. and Ratcliff D. 1972. Generalized iterative scaling for log-
linear models. Annals of Mathematical Statistics, pp. 43(5):1470-1480.

[7] Ekbal A., Naskar S. and Bandyopadhyay S. 2006. A Modified Joint
Source Channel Model for Transliteration. In Proceedings of the
COLING/ACL 2006, Australia, pp. 191-198.

[8] Goto I., Kato N., Uratani N. and Ehara T. 2003. Transliteration
considering Context Information based on the Maximum Entropy
Method. In: Proceeding of the MT-Summit IX, New Orleans, USA, pp.
125–132.

[9] Grishman R. 1995. Where's the syntax? The New York University
MUC-6 System. In: Proceedings of the Sixth Message Understanding
Conference.

[10] Knight K. and Graehl J. 1998. Machine Transliteration. Computational
Linguistics, 24(4): 599-612.

[11] Li H., Zhang M. and Su J. 2004. A Joint Source-Channel Model for
Machine Transliteration. In: Proceedings of the 42nd Annual Meeting of
the ACL, Barcelona, Spain, (2004), pp. 159-166.

[12] Li W. and McCallum A. 2003. Rapid Development of Hindi Named
Entity Recognition using Conditional Random Fields and Feature
Induction. In: ACM Transactions on Asian Language Information
Processing (TALIP), 2(3): 290–294.

[13] McDonald D. 1996. Internal and external evidence in the identification
and semantic categorization of proper names. In: B.Boguraev and J.
Pustejovsky (eds), Corpus Processing for Lexical Acquisition, pp. 21-39.

[14] Mikheev A, Grover C. and Moens M. 1998. Description of the LTG
system used for MUC-7. In Proceedings of the Seventh Message
Understanding Conference.

[15] Pietra S. D., Pietra V. D. and Lafferty J. 1997. Inducing features of
random fields. IEEE Transactions on Pattern Analysis and Machine
Intelligence, pp. 19(4): 380-393.

[16] Saha S. K., Mitra P. and Sarkar S. 2008. Word Clustering and Word
Selection based Feature Reduction for MaxEnt based Hindi NER. In:
proceedings of ACL-08: HLT, pp. 488-495.

[17] Srihari R., Niu C. and Li W. 2000. A Hybrid Approach for Named Entity
and Sub-Type Tagging. In: Proceedings of the sixth conference on
applied natural language processing.

[18] Wakao T., Gaizauskas R. and Wilks Y. 1996. Evaluation of an algorithm
for the recognition and classification of proper names. In: Proceedings
of COLING-96

41 Polibits (38) 2008

Named Entity Recognition in Hindi using Maximum Entropy and Transliteration

42Polibits (38) 2008

Resumen—Se muestra la implementación gráfica de un nuevo
modelo para la renderización de fuerzas de contacto durante la
interacción háptica dentro de ambientes virtuales 3D para
deformación y corte de objetos virtuales con propiedades
dinámicas y superficiales complejas. Se define un algoritmo
simple para la triangulación de un objeto virtual, empleando
algoritmos clásicos para la detección de colisiones. Se desarrolló
un algoritmo para la visualización del corte de la malla triangular
así como para el cálculo de las dinámicas de la malla durante el
corte. Se presentan imágenes de la plataforma utilizando
OpenGL y Visual C++, para la parte gráfica y el dispositivo
Falcon para la retroalimentación háptica.

Palabras clave—Dispositivo háptico, renderización 3D,
deformación y corte.

3D VISUALIZATION OF DEFORMATION AND CUT

OF VIRTUAL OBJECTS
BASED ON ORTHOGONAL DECOMPOSITION

Abstract—We present graphic implementation of a novel

model for contact force rendering during the haptic interaction in
3D virtual environment. It is applied during cut and deformation
of virtual objects with complex dynamic and surface properties.
We define the simple algorithm for triangulation of the virtual
object using the classic algorithm of detection of collisions. The
algorithm is proposed that allows visualizing of the cutting
triangular net as well as the calculation of the dynamics of the net
during the cut. We present the corresponding images using
OpenGL and Visual C++ for the graphic module and Falcon
device for haptic feedback.

Index Terms—Haptic device, 3D rendering, deformation and
cut.

I. INTRODUCCIÓN
URANTE la interacción con objetos virtuales a través de
dispositivos hápticos, un aspecto importante a considerar

es la renderización de las fuerzas de contacto, para ello se han
desarrollado numerosas teorías y algoritmos dentro de los que

Manuscrito recibido el 20 de agosto del 2008. Manuscrito aceptado para su

publicación el 3 de noviembre del 2008.
Gabriel Sepúlveda, Departamento de Ingeniería Eléctrica, CINVESTAV,

México DF (email: gsepulveda@cinvestav.mx).
Vicente Parra, Grupo de Robótica y Manufactura Avanzada,

CINVESTAV, Saltillo, México (email: vparra@cinvestav.mx).
Omar A. Domínguez, Centro de Investigación en Tecnologías de

Información y Sistemas, UAEH, Pachuca, México (email:
omar_arturo@uaeh.edu.mx).

destacan: el diseño de restricciones necesarias para la
simulación de tejido [1], el uso de herramientas virtuales [2],
el uso de elementos locales (LEM) [3]. Así como los
algoritmos empleados para la generación de texturas como [4]
y [5]. Pero estos algoritmos utilizados en la renderización
háptica consideran relativamente poco la visualización de la
tarea que se está llevando acabo, además de necesitarse por lo
menos dos de ellos para generar simultáneamente propiedades
dinámicas del objeto y textura en su superficie.

Es por lo anterior que este documento presenta un nuevo
algoritmo para la renderización gráfica de objetos virtuales
deformables y bajo corte, utilizando como base el algoritmo de
descomposición ortogonal utilizado para la generación de
fuerzas de contacto a través de un dispositivo háptico [6], este
algoritmo permite la generación simultánea de propiedades
dinámicas y propiedades superficiales para los objetos
virtuales.

Fig. 1. Descomposición ortogonal de la fuerza aplicada a una superficie

definida por una esfera en coordenadas articulares.

II. DESCOMPOSICIÓN ORTOGONAL
El algoritmo de descomposición ortogonal presentado en

[6] permite la descomposición de la dinámica del dispositivo
háptico en dos dinámicas independientes y ortogonales, la
primera se utiliza para generar propiedades dinámicas de los
objetos virtuales, tales como deformación elástica lineal y de
tipo exponencial [7], esta dinámica es empleada en la
renderización de las fuerza de contacto, deformación y corte
de los objetos virtuales. La segunda dinámica generada por la
descomposición ortogonal se emplea en la generación de
fuerzas de fricción simples (viscosa-Coulomb) o avanzadas
(GMS) [8]. La primera dinámica es normal al punto de

Gabriel Sepúlveda, Vicente Parra y Omar A. Domínguez

Visualización 3D de Deformación y Corte
de Objetos Virtuales

basada en Descomposición Ortogonal

D

43 Polibits (38) 2008

contacto con el objeto virtual y la segunda es tangente al punto
de contacto como se muestra en la Fig. 1.

El algoritmo de descomposición ortogonal presentado en
[6] permite generar fuerzas de deformación exponencial como
las presentes durante la manipulación de tejido orgánico real
[7], fuerzas presentes durante el corte de una muestra de tejido
[9] con una gran fidelidad al utilizar dispositivos hápticos de
altas prestaciones como el Phantom Premium 1.0 de la
compañía Sensable y con una fidelidad moderada con
dispositivos como el Falcon de la compañía Novint.

III. MALLADO DE LA MUESTRA VIRTUAL
Para realizar caracterizaciones biomecánicas se toman

muestras de tejido y sobre ellas se realizan las pruebas, para
nuestros experimentos dentro de un ambiente virtual 3D se
generó una muestra virtual con forma de prisma triangular (ver
Fig. 6). La muestra virtual se genera a partir de un triángulo
definido por sus tres vértices, posteriormente se genera un
mallado por subtriangulación iterativa a partir del primer
triángulo siguiendo la base del algoritmo empleado para
generar el fractal de Serpinsky, en el cual cada triángulo es
subdividido en tres triángulos como se muestra en la Fig 2A y
2B (triángulos negros). El algoritmo implementado dentro de
nuestra plataforma extiende el algoritmo anterior para generar
el cuarto triángulo (el triángulo blanco del centro en la Fig.
2B, y así lograr una triangulación completa a partir del
triángulo original.

A) B) C)
Fig. 2. Triangulación generada a partir de subtriangulación iterativa.

La muestra posee una característica denominada resolución,

dicha característica permite definir el número de iteraciones
que se realizará el algoritmo definiendo así la cantidad de
triángulos de acuerdo a la Tabla 1.

TABLA I

CANTIDAD DE TRIÁNGULOS DE LA MALLA DE ACUERDO
A LA RESOLUCIÓN DEL OBJETO VIRTUAL

Resolución Triángulos en la malla

1 1
2 4
… …
i 4(i-1)

Dentro de la estructura de la muestra virtual se definen los

vértices que forman el contorno del objeto, obteniendo así los
puntos a partir de los cuales se generan las paredes del objeto,
generando un mallado triangular para las paredes como se
muestra en la Fig. 3, el numero de subdivisiones verticales
depende de la resolución del objeto virtual.

Fig. 3. Triangulación empleada en las paredes de la muestra virtual.

IV. MALLADO INERCIAL
Para generar la percepción visual de un movimiento

continuo a lo largo de la superficie de la muestra virtual se
generó un mallado inercial. Un mallado inercial es un conjunto
de puntos a los cuales se les asigna una masa, interconectados
por resortes y amortiguadores a lo largo de las aristas que los
unen, como se muestra en la Fig. 4, lo anterior produce el
efecto deseado: cuando un nodo de la malla es desplazado, el
cálculo de la dinámica debida a los resortes y amortiguadores
produce una fuerza sobre sus vecinos, la cual produce
desplazamiento en ellos, por lo cual se genera el efecto que
permite interpretar la malla como un cuerpo continuo y
deformable.

Fig. 4. Malla inercial, las esferas representan lo nodos del mallado, y las
conexiones representan los resortes y amortiguadores que conectan a cada uno
de los nodos.

La dinámica de la malla inercial es la sumatoria de las

dinámicas de cada uno de n nodos de la malla. A cada i-ésimo
nodo de la malla se le asigna una masa mi y un conjunto de
valores bij y kij que representan los valores del amortiguador y
del resorte respectivamente entre el nodo i y el nodo j por
último la variable Fi que representa la fuerza externa aplicada
sobre el nodo i, esto se representa mediante la siguiente
ecuación:

i

n

i
ijjiij

n

i
jiijii FXXXkXXbXm =−−+−+ ∑∑

== 1
0

1
)()(&&&& (1)

donde iii XXX &&& ,, representa el desplazamiento, velocidad y
aceleración del nodo i en coordenadas cartesianas
respectivamente, 0ijX representa la longitud inicial del

resorte que une el nodo i con el nodo j.
Para resolver la ecuación diferencial presentada en (1) se

utilizó como integrador el algoritmo de Runge-Kuta de 4°
orden.

44Polibits (38) 2008

Gabriel Sepúlveda, Vicente Parra y Omar A. Domínguez

V. DETECCIÓN DE COLISIONES Y GENERACIÓN DE FUERZAS
DURANTE DEFORMACIÓN

Para generar las fuerzas de contacto presentes durante la
interacción utilizando un dispositivo háptico y a través del
algoritmo de descomposición ortogonal como se muestra en
[6] se requiere generar una ecuación implícita, la cual define
una geometría con la cual se interactúa a través del dispositivo
háptico, para el desarrollo de este trabajo se consideró la
ecuación de un plano como la geometría de interacción
descrito por la ecuación:

0=+++ DCzByAx (2)

donde A, B, C, D son escalares constantes, x, y, z son las
tres coordenadas cartesianas.

Para generar la geometría de interacción durante la
manipulación de la muestra virtual, se requiere un algoritmo
para la detección de colisiones. El algoritmo empleado para la
detección de colisiones entre la herramienta virtual y el
mallado es el conocido como colisión entre esfera y triángulo,
este algoritmo se emplea situando pequeñas esferas a lo largo
de la superficie de la herramienta que puede entrar en contacto
contra el mallado, después se realiza una búsqueda exhaustiva
entre los triángulos del mallado de la muestra y las esferas de
la herramienta (conocidas como Proxy), cuando se detecta la
colisión se procede de la siguiente forma:

1. Se realiza la detección de colisiones.
2. Se obtienen las coordenadas de los tres vértices del

triángulo con el cual se generó la colisión.
3. A partir de los vértices se calcula la ecuación del

plano al cual pertenece el triángulo.
4. Con la ecuación del plano se calcula la fuerza de

interacción que será enviada al dispositivo háptico
así como el desplazamiento debido al movimiento
del operador.

5. Una vez calculado el desplazamiento del triángulo
se realiza el cálculo de la dinámica de la malla de
acuerdo al modelo inercial, logrando la difusión
del movimiento a lo largo del mallado.

Los pasos mencionados se muestran en la Fig. 5. Es
importante señalar que la fuerza calculada en el paso 4 es la
fuerza de interacción normal al punto de contacto (ver Fig. 1)
la cual se interpreta a través del dispositivo háptico como la
dinámica del objeto virtual por ejemplo su elasticidad y su
dinámica ante el corte.

Fig. 5. Pasos para la detección de colisiones, renderización de fuerzas y

deformación del mallado de la muestra virtual.

Durante la deformación de la muestra virtual debida a
compresión la normal del plano apunta hacia afuera del objeto
virtual, logrando con ello una fuerza en dirección contraria a la
compresión percibiendo el operador rigidez o elasticidad del
objeto virtual como se muestra en la Fig. 6.

Fig. 6. Pantalla de la aplicación mostrando la compresión de la muestra virtual.

Durante la interacción en la cual se estira el mallado, lo que

correspondería a tomar con unas pinzas la muestra virtual, la
normal del plano de interacción apunta hacia adentro de la
muestra para generar una fuerza que se oponga a la distensión,
esto se muestra en la Fig. 7.

45 Polibits (38) 2008

Visualización 3D de Deformación y Corte de Objetos Virtuales basada en Descomposición Ortogonal

Fig. 7. Pantalla de la aplicación mostrando la distensión de la muestra virtual.

VI. ALGORITMO PARA EL CORTE
Para la renderización de las fuerzas durante el corte de la

muestra virtual mediante el dispositivo háptico se emplearon
los algoritmos descritos en [6], donde se muestra como
ejemplo de corte la dinámica de una muestra de hígado de
cerdo durante el corte. En [6] se generan las fuerzas de
interacción pero no se presenta algún algoritmo que genere la
misma retroalimentación de forma visual.

Para generar la visualización del corte se desarrollo un
algoritmo que toma en cuenta la estructura triangular de la
muestra virtual (ver Fig. 8) permitiendo cortes en dirección
vertical ascendente (paralelos al eje y). El algoritmo consta de
los siguientes pasos:

1. Se detecta el desplazamiento del dispositivo
háptico durante la deformación de la muestra
virtual hasta que se alcanza el punto de ruptura del
tejido, con lo cual se cambia del modo de
interacción de deformación a modo de interacción
en corte.

2. Una vez en modo de interacción de corte se
calcula de acuerdo al punto de contacto con la
malla y a la dirección del desplazamiento una línea
que define la dirección del corte Fig. 8 A.

3. Se realiza un cálculo del número de triángulos que
tengan dos o más vértices a la derecha de la línea
de corte, es decir que su coordenada x siempre esté
a la derecha de la línea de corte. Dichos triángulos
serán eliminados del mallado de la muestra virtual,
como se muestra en la Fig. 8 B.

4. Una vez eliminados los triángulos del mallado se
procede a recalcular el contorno del objeto para
generar las nuevas paredes del objeto.

A) B)

C)
Fig. 8. Pasos realizados por el algoritmo para la visualización del corte de una

muestra virtual.

El conjunto de nodos de la nueva muestra es reducido

cambiando los elementos empleados en (1), al eliminar
conexiones de resortes y amortiguadores. Los nodos, caras y
paredes eliminados son removidos de la escena virtual. En la
Fig. 9 se muestra una pantalla de la aplicación desarrollada
donde se ha realizado un corte de la muestra virtual.

Fig. 9 Pantalla que muestra la aplicación después de haber realizado un corte.

VII. PLATAFORMA EXPERIMENTAL
La plataforma experimental empleada consta de una

computadora portátil o laptop HP Pavillion dv2000 con
procesador Intel Core2 Duo a una velocidad de 1.5 GHz con 2
Gb de memoria RAM y una tarjeta de video Mobile Intel 965
con un monitor LCD de 14 pulgadas. El sistema operativo es
Windows Vista Ultimate. El ambiente de programación
empleado fue OpenGL y sus librerías de herramientas GLU
para la renderización del ambiente virtual 3D. Visual C++
2007 como lenguaje de programación para la lógica del
programa, los modelos matemáticos, los integradores
empleados y las funciones de escritura de archivos.

El dispositivo háptico empleado en esta plataforma
experimental fue el Falcon de la compañía Novint. La
plataforma experimental se muestra en la Fig. 10.

46Polibits (38) 2008

Gabriel Sepúlveda, Vicente Parra y Omar A. Domínguez

Fig. 10. Plataforma experimental, dispositivo háptico y computadora.

VIII. CONCLUSIONES
Se presentó un algoritmo para la generación de muestras

virtuales de tejido a partir de una triangulación iterativa. El
algoritmo permite la renderización de fuerzas de contacto
mediante un dispositivo háptico así como la visualización
durante interacción en deformación y corte de la muestra. El
algoritmo aporta un método para generar las geometrías
necesarias para emplear el algoritmo para la renderización
háptica de fuerzas basado en la descomposición ortogonal. El
algoritmo permite únicamente cortes verticales de la muestra
virtual, por lo que debe ser modificado para permitir cortes en
cualquier dirección. El algoritmo aquí presentado se puede

implementar en aplicaciones hápticas para la simulación de
cirugía, entrenadores hápticos para estudiantes de medicina,
así como para la interacción en mundos virtuales dinámicos.

REFERENCIAS
[1] Oliver R. Astley and Vincent Hayward. Design constraint for haptic

surgery simulation. IEEE ICRA, 2000 San Francisco CA.
[2] Colgate, J. E., Stanley, M. C., and Brown, J. M. Issues in the Haptic

Display of Tool Use. In: IEEE/RSJ, Proceedings of International
Conference on Intelligent Robots and Systems, Pittsburgh, 1995, pp.
140-145.

[3] Teeranoot Chanthasopeephan Jaydev P. Desai and Alan C. W. Lau. 3D
and 2D Finite Element Analysis in Soft Tissue Cutting for Haptic
Display. In: Proceedings of ICAR, 2005, pp. 360-367.

[4] Omar Arturo Domínguez Ramírez. Design and integration of a Realistic
Haptic Interface. CINVESTAV, Mechatronic Section, PhD Thesis,
México, 2005.

[5] Gianni Campion and Vincent Hayward. Fundamental Limits in the
Rendering of Virtual Haptic Textures. McGill Univerity, Montreal,
Canada.

[6] Gabriel Sepúlveda, Vicente Parra, Omar Domínguez. Noninear Haptic
Rendering of Deformation and Cutting Based on Orthogonal
Decomposition. Journal “Research in Computing Science”, Vol. 35,
2008, pp. 51-61.

[7] Iman Brouwer et al. Measuring In Vivo Animal Soft Tissue Properties
for Haptic Modeling in Surgical Simulation. University of California,
USA, 2001.

[8] Farid Al-Bender, Vicent Lampaert and Jan Swevers. The Generalized
Maxwell-Slip Model: A Novel Model for Friction Simulation and
Compensation. IEEE Transaction on Automatic Control, Vol. 50, 2005,
pp. 11.

[9] Mohsen Mahvash and Vincent Hayward. Haptic Rendering of Cutting:
A Fracture Mechanics Approach. McGill University, Quebec, Canada,
2001.

47 Polibits (38) 2008

Visualización 3D de Deformación y Corte de Objetos Virtuales basada en Descomposición Ortogonal

48Polibits (38) 2008

Abstract—The growing amount of multimedia data available
to the average user has reached a critical phase, where methods
for indexing, searching, and efficient retrieval are needed to
manage the information overload. Many research works related
to this field have been conducted within the last few decades and
consequently, some video database models have been proposed.
Most of the modern video database models make use of
hierarchical structures to organize huge amount of videos to
support video retrieval efficiently. Even now, among open
research issues, video database access control is still an
interesting research area with many proposed models. In this
paper, we present a hybrid video database model which is a
combination of the hierarchical video database model and
annotations. In particular, we extend the original hierarchical
indexing mechanism to add frames and salient objects at the
lowest granularity level in the video tree with the aim to support
multi-level access control. Also, we give users more solutions to
query for videos based on the video contents using annotations.
In addition, we also suggest the original database access control
model to fit the characteristics of video data. Our modified model
supports both multiple access control policies, meaning that a
user may be affected by multiple polices, and multi-level access
control, meaning that an authorization may be specified at any
video level. Theoretical analyses and experimental results with
real datasets are presented that confirm the correctness and
efficiency of our approach.

Index Terms—Video database security, video database model,

content-based video retrieval, access control, multimedia
database.

I. INTRODUCTION
HE field of multimedia systems has experienced an
extraordinary growth during the last decade. Among

many visible aspects of the increasing interest in this area is
the creation of huge digital libraries accessible to users
worldwide. These large and complex multimedia databases
must store all types of multimedia data, e.g., text, images,
animations, graphs, drawings, audio, and video clips. Video
information plays a central role in such systems, and

Manuscript received May 11, 2008. Manuscript accepted for publication

October 22, 2008.
This work was supported in part by Advances in Security & Information

Systems (ASIS) Lab, Faculty of Computer Science & Engineering, HCMUT,
Vietnam.

N. A. T. Tran is with the KMS Company, Ho Chi Minh City, Vietnam (e-
mail: thytran@kms.com.vn).

T. K. Dang is with the Faculty of Computer Science & Engineering,
HCMC University of Technology, VNUHCM, Ho Chi Minh City, Vietnam
(phone:+84-98-3173334, e-mail: khanh@cse.hcmut.edu.vn).

consequently, the design and implementation of video
database systems have become a major topic of interest.

With the huge amount of video information stored in
archives worldwide, video databases have been researched for
many years to introduce efficient ways to manage this kind of
data. Below are some criteria that a video database should
satisfy:

− The first thing that should be satisfied is how to
organize efficiently raw video data. Videos are
gathered from various sources with different formats so
they need to be normalized to a standard form before
being stored. In addition, these videos should also be
compressed to reduce storage space because of their
inherently huge sizes. Furthermore, video database also
extracts key features such as key frames, salient
objects, etc. to achieve high performance video
content-based retrieval.

− Secondly, the video database access control scheme
should be integrated with the database indexing
structure in order that video database access control can
be achieved more effectively. Since video database
access control schemes should exploit semantic visual
concepts and not low-level visual features, these
database indexing units should correspond to the
relevant semantic visual concepts.

− Thirdly, the flexibility and efficiency of transmitting
video data through networks are an important
consideration because most video databases are
deployed over network environments.

− Finally, control over the security of a video database
system is important. Videos can be illegally accessed
while being transferred over the network, or accessed
directly into the database. This is vital for the important
video databases such as national video data stores.

To achieve the above requirements, this paper proposes a
video database system that supports content-based retrieval
and multi-level access control with different policies. This
video database system is illustrated in Fig. 1. It contains two
main components, video analyzing module and query
processing module.

As can be seen in Fig. 1, the videos come from various
sources with different formats so they firstly need to be
analyzed. This step consists of three major tasks:

− Partitioning video into several video shot (shot
boundary detection), extracting key frames and salient

An Extended Video Database Model
for Supporting Finer-Grained Multi-Policy

and Multi-Level Access Controls
Nguyen Anh Thy Tran and Tran Khanh Dang

T

49 Polibits (38) 2008

objects of each shot (key-frame and salient object
extraction).

− Classifying and clustering video shots.
− Indexing video database using semantic clusters.
These tasks are handled by the video analyzing component

while the query processing component is responsible for
controlling access to the database. The access control model
should be flexible and reliable. This means that users should
have multiple methods to retrieve the desired videos but they
should only be able to access those to which they have been
authorized.

Fig. 1. A video database system structure.

The rest of this paper is organized as follows: In Section II,

we briefly introduce the most crucial related work. In section
III, after basics of video data processing is presented, we
introduce a new hierarchical video database schema with more
granularity levels. Section IV introduces the proposed
algorithms to manage finer-grained access controls to the
proposed video database. In section V, we present and discuss
the implementation of a system prototype and experimental
results of our proposed video database and access control
model. Finally, section VI gives concluding remarks and
introduces future work.

II. RELATED WORK
Several efforts have been made to construct video database

models to achieve flexible query and reliable access control.
Basically, such efforts include the common data model for
video information and hierarchical video data models [11],
[2]. The first model did support content-based query using
annotations, but was not suitable for large video databases
since its structure was “flat”, meaning every video was at the
same level. This restriction led to a problem in that users
could not browse and navigate to find desired videos. In
contrast, the hierarchical model proposed by Bernito et al.
organized videos into semantic clusters within a tree structure.
This helped to resolve the semantic gap between the low-level
visual features and the high-level semantic visual concepts.
However, this model lacked annotations and so although

browsing requirements can be satisfied, retrieval options were
not flexible.

With regards to video database access control, although
there are some proposed models that support multi-level video
access controls, on the whole, they do not allow users to
specify authorizations at frame and object levels [1], [2]. In
[2] and [3], Bernito et al. suggested a mechanism to manage
access control to hierarchical video objects and another
method to support multiple access control policies. However,
combining them into a unique model is not a simple task
because of authorization conflicts. Consequently, in this
paper, we propose a full-fledged model that supports both a
multi-policy and multi-level access control mechanism.

III. VIDEO DATABASE MODELS
In this section, after major video processing steps are

presented, we introduce an extended storage model for video
data that supports both semantic visual concepts clustering
and flexible content-based retrieval. This newly introduced
video database model can serve as a solid basis for
materializing flexible access control mechanisms in a single
video database system, which will be presented in section IV.

A. Video Processing
This paper does not intend to provide detailed information

about video processing, but still we will provide some basic
background information to offer a context for the proposal of
a new video database model. Firstly, video formats are
discussed in relation to compressed and uncompressed videos.
Secondly, video shot detection methods to split a whole video
into a sequence of meaningful video shots are presented.
Thirdly, methods to extract video key features which will be
utilized by users when searching through the database are
introduced and finally, some video shot classification methods
used to classify video shots into clusters are presented.

Fig. 2. Spatial and temporal sampling of a video sequence.

B. Digital Video Formats
Digital video is a representation of a natural (real-world)

visual scene, sampled spatially and temporally (cf. Fig. 2). A
scene is sampled at a point in time to produce a frame.
Sampling is repeated at intervals, called spatial sampling, (e.g.
1/24 second intervals) to produce a moving video signal. In
each scene, a frame is sampled at certain points, called pixels,
positioned on a square or rectangular grid. At each pixel,
stored information often includes its color like RGB (Red–
Green–Blue) method or its color and luminance like YCbCr
method [14], [15].

Spatial
sampleTemporal sample

Result

Request
MPEG
format

JPEG
format

Conference
Stream

Video

Analyzing
End user

Video
Database

Query
processing

50Polibits (38) 2008

Nguyen Anh Thy Tran and Tran Khanh Dang

Videos are often compressed prior to being stored and
decompressed before being displayed on the user screen.
There are many video formats all using the CODEC model to
compress and decompress videos [15]. A video CODEC (cf.
Fig. 3) encodes a source image or video sequence into a
compressed form and decodes this to produce a copy or
approximation of the source sequence. If the decoded video
sequence is identical to the original, then the coding process is
said to be ‘lossless’; if the decoded sequence differs from the
original, the process is said to be ‘lossy’. A video encoder
consists of three main functional units: a temporal model, a
spatial model and an entropy encoder.

Fig. 3. An enCOder/DECoder.

The goal of the temporal model is to reduce redundancy

between transmitted frames by forming a predicted frame and
subtracting this from the current frame. The output of this
process is a residual (difference) frame and the more accurate
the prediction process, the less energy is contained in the
residual frame. Fig. 4 illustrates the residual form of two
adjacent frames. The obvious problem with this simple
prediction is that a lot of energy remains in the residual frame
(indicated by the light and dark areas) and this means that
there is still a significant amount of information to compress
after temporal prediction. Much of this residual energy is due
to object movements between the two frames and a better
prediction may be formed by compensating for motion
between the two frames. To reduce this energy, we divide a
frame into multiple NxN blocks and search for their movement
directions called motion vectors. With this approach, the
outputs of temporal model are the motion vectors and the
residual forms of appropriate blocks belong to two frames.
Consider the following example, there is a block (j, k) in the
ith frame which moves to the position (m, n) in the (i+1)th
frame. If we subtract the whole frame (i+1) from frame i, the
residual form at block (j, k) has high remaining energy
because this block already moved to another location. In
contrast, this energy is really small if we subtract block (m, n)
of the frame (i+1) by block (j, k) of the frame i because they
store the same object.

The function of the spatial model is to decorrelate further
image or residual data and to convert it into a form that can be
efficiently compressed using an entropy coder. The purpose of
the transform stage in an image or video CODEC is to convert
image or motion-compensated residual data into another
domain (the transform domain). The choice of a transform
depends on a number of criteria:

Fig. 4. Residual frame (the third one) of the first two frames.

− Data in the transform domain should be decorrelated

(separated into components with minimal inter-
dependence) and compacted (most of the energy in the
transformed data should be concentrated into a small
number of values).

− The transform should be reversible.
− The transform should be computationally tractable

(low memory requirement, achievable using limited-
precision arithmetic, low number of arithmetic
operations, etc.).

The most transform ever-popular is Discrete Cosine
Transform (DCT) [15]. The Discrete Cosine Transform (DCT)
operates on X, a block of N×N samples (typically image
samples or residual values after prediction) and creates Y, an
N×N block of coefficients. The action of the DCT (and its
inverse, the IDCT) can be described in terms of a transform
matrix A. The forward DCT (FDCT) of an N×N sample block
is given by:

 TAXAY = (1)

and the inverse DCT (IDCT) by:

 YAAX T= (2)

where X is a matrix of samples, Y is a matrix of coefficients
and A is a N×N transform matrix. The elements of A are:

0) ! i

N
C 0), i

N
C ,

N
ijCA iiiij ====

+
= (2(1

2
)12(cos π (3)

The output of DCT transform will be compressed using the
entropy encoder which converts a series of symbols
representing elements of the video sequence into a
compressed bit stream suitable for transmission or storage.

C. Video Shot Boundary Detection (SBD)
The first step in indexing video databases (to facilitate

efficient access) is to analyze the stored video streams. Video
analysis can be classified into two stages [9]: shot boundary
detection and key features extraction. The purpose of the first
stage is to partition a video stream into a set of meaningful
and manageable segments, whereas the second stage aims to
abstract each shot using representative objects such as frames,
salient objects, etc. The problem of shot boundary detection

Encoder

Decoder

Transmit or store

 Video source

Display

51 Polibits (38) 2008

An Extended Video Database Model for Supporting Finer-Grained Multi-Policy and Multi-Level Access Controls

will be addressed at this point while the problem of selecting
key features from segmented shots will be addressed within
the next section.

Shot boundary detection methods can be categorized into
two main groups. The first one works on the uncompressed
domain and the second works on compressed videos. Methods
in the uncompressed domain can be broadly classified into
five categories: template-matching, histogram-based, twin-
comparison, block-based, and model-based techniques.

Within template-matching techniques, each pixel at the
spatial location (i, j) in frame fm is compared with the pixel at
the same location in frame fn , and a scene change is declared
whenever the difference function exceeds a pre-specified
threshold. Using histogram-based techniques, the histogram
of a video frame and a difference function (S) between fn and
fm are calculated using equation 4. If S is greater than a
threshold, a cut is detected.

∑

=
++ −=

N

i
mmmm ifHifHffS

1
11),(),(),(

 (4)

The third method, twin comparison, uses two thresholds,
one to detect cuts and the other to detect potential starting
frames for gradual transitions. A different trend to detect shot
boundary is called a block-based technique that uses local
attributes to reduce the effect of noise and camera flashes. In
this trend, each frame fm is partitioned into a set of r blocks
and rather than comparing a pair of frames, every sub-frame
in fm is compared with the corresponding sub-frame in fn. The
similarity between fn and fm is then measured. The last shot
boundary-detection technique is termed model based
segmentation where different edit types, such as cuts,
translates, wipes, fades, and dissolves are modeled by
mathematical functions. The essence here is not only to
identify the transition but also the transition type.

On the other hand, methods for detecting shot boundaries
that work in the compressed domain can broadly be divided
into three categories. The first category uses DCT coefficients
of video-compression techniques in the frequency domain.
These coefficients relate to the spatial domain, and as such
they can be used for scene change detection. The second
category makes use of motion vectors. The concept here is
that motion vectors exhibit relatively continuous changes
within a single camera shot, while this continuity is disrupted
between frames across different shots. The final category
merges the above two trends and can be termed hybrid
Motion/DCT. In these methods, motion information and the
DCT coefficients of the luminance component are used to
segment the video.

In summary, techniques that work upon uncompressed
video data lack the necessary efficiency required for
interactive processing. While other techniques that deal
directly with compressed data may be more efficient, but they
often lack reliability.

D. Key Features Extraction
Content based video indexing and retrieval requires that key

features be extracted in the processing phase to improve query
performance. These features include frame, salient object,
audio, text, etc.

Key-frames are the represented images of a video in order
that users can roughly understand the video without reviewing
through its content. Key-frame extraction is closely related to
shot boundary detection because to find out a shot bound,
SBD algorithms usually search for the frame that has the
largest differences compared to the previous one, while key-
frame extraction methods detect the most unchanged frame
inside each shot. It is cost saving to extract key frames at the
same time as shot boundary detection. The other important
feature, the salient object, is the key object displayed on the
screen as long as the video shot. These are extracted from
video shots and used for many purposes such as video shot
classification, video retrieval and video access control.

Audio is one other important aspect of video data along
with visual information. Audio can be kept as raw data and
will be used to search for the stored video using its tune.
However, analyzing audio is a poor performing process and so
most systems, especially news video database systems,
convert audio into text to reduce processing time when
querying the videos. In conjunction with audio, text or
captions often appear in videos so they too can be used for
video classification and video retrieval efficiently because text
processing is relatively faster than audio or video. When
words have been collected, they need to be ‘cleaned up’ by
some natural language processing algorithms to extract
keywords and calculate their weights.

E. Video Shot Classifying
After the principal video shots and their visual features are

obtained, we focus on generating higher-level visual concepts
such as semantic clusters, so that more effective database
indexing and access control scheme can be supported.
Classification methods have been researched for a long age
and there are many methods had been developed such as
decision tree, k-nearest neighbor (kNN), Naive Bayes (NB),
neural networks (NNet), support vector machines (SVM), etc.

The videos can be classified using its raw visual
information such as visual data (color, brightness etc), audio
data (tune, frequency etc) or higher level information likes
texts or salient objects. To deal with visual and audio data that
have a tremendous number of features, we should use methods
like neural network or support vector machine who can work
smoothly with large number of inputs. For example, we can
use the pixels of labeled videos as inputs of a neural network
to produce its weight vectors used to classify new unlabeled
videos. The most important advantage of these methods is
they can work on high dimensional input with acceptable time
and quality. However, they are too difficult to understand for
human because the result of training step is only a list of
numbers.

52Polibits (38) 2008

Nguyen Anh Thy Tran and Tran Khanh Dang

On the other hand, decision tree or Naive Bayes are suitable
for higher level classification because the number of inputs is
relatively low in this case. These methods are quite simple and
their training results are visual and understandable by human.
More details of the above techniques are described in [9],
[15], [17], [18], [16], [19], [5], [10], [6], [12].

F. Video Database Model
When very large video data sets are regarded, video

database models and indexing can no longer be ignored if we
want to support effective video retrieval and access control. In
this section, we introduce a hierarchical indexing technique
and its improvement to support multi-level access control.

1) Hierarchical Video Database Model

In order to control access efficiently, most video databases
are designed as hierarchical structures such as the semantic
cluster tree [2]. Within this structure, video contents are first
partitioned into a set of semantic clusters; each semantic
cluster is then partitioned into a set of sub-clusters and each
sub-cluster may consist of a set of sub-regions. Using this
indexing method, the system can handle multi-level access
control efficiently. The indexing structure includes: a root
hash table for keeping track of the information about all the
clusters in the database; a leaf hash table for each cluster in
order to record the information about all its sub-clusters; a
second-leaf hash table for each sub-cluster in order to record
the information about all its sub-regions and a hash table for
each sub-region for mapping all its data points to the disk
pages where the videos reside. To improve input/output
efficiency, all semantic clusters are stored into a set of
independent disks as shown in Fig. 5.

Fig. 5. The hierarchical video database partition

and cluster-based indexing structure.

2) New Finer-Granular Hierarchy Video Database Model

The model described above has many advantages but it also
has some limitations. Firstly, the only video unit supported is
video shot while users are often interested in the whole video
contains a certain shots. Secondly, the hierarchy tree is
inflexible because in the case of extremely large databases, the
tree level cannot be increased. Thirdly, this model cannot
support access control at a frame and salient object granularity
level. Finally, it looses most of the information needed for
flexible content-based retrieval. Even though clusters are high
semantic level extracted from other information, we still need
to remain that information such as captions, audios, images
etc. Given the above reasons, this article suggests a new
model as illustrated in Fig. 6 to tackle these issues.

To address the first restriction, two new video levels are
introduced; video and scene, meaning that a complete video
may contain some scenes and a scene contain some shots.
With this enhancement, a video database administrator can
specify authorizations at video (most often), scene and shot
levels. This article also proposes to modify the original
hierarchy of the video tree to use video groups which consist
of videos or other groups instead of clusters, sub-clusters and
sub-regions. With this amendment, the path from root to the
leaves can be controlled with greater flexibility where new
groups can be introduced or existing groups removed.

Fig. 6. The extended video database diagram.

Along with the two above amendments, it is suggested that
a new video element at the lowest granularity level called
video segment be introduced. This element would prove very
useful when applying access control to a frame or a salient
object. Consider the example in Fig. 7, where there are two
users A and B within the system. A policy applies to user A
that specifies that this user cannot view two frames (j+1)th and
(j+2)th of video shot V. In addition, there is another policy that
restricts user B from seeing object named XXX of video shot
V. The easiest way to handle these two policies is to copy the
whole video shot V to two appropriate versions. However, this
solution will impinge on memory space since video data is
often huge. Using segments is another solution which splits
the video shot to certain segments and then copies the
segments only when needed. In this example, the video shot V
is split into 5 separate parts: (1) from the beginning to frame

 Cluster 1

 Video Contents in Database

Cluster 1

Object 1111

Object 111p

keys entries

 Cluster n

 Subcluster 11 Subcluster 1k Subcluster nl

 Subregion111 Subregion11r Subregion nlt

Cluster n

Object nlt1

Object nltw

keys entries

53 Polibits (38) 2008

An Extended Video Database Model for Supporting Finer-Grained Multi-Policy and Multi-Level Access Controls

jth, (2) frames j+1 and j+2, (3) from frame (j+3)th to frame ith,
(4) frames (i+1) and (i+2), (5) from frame (i+3)th to the end.
With this solution, we only need to copy the segment 4th,
which contains only two frames, into two versions: version #1
with original XXX objects, and version #2 with blurred XXX
objects. Then, when user A requires this video shot, the
system will display the 1st, 3rd, 4th- version #1 and 5th segments
while user B sees 1st, 2nd, 3rd, 4th –version #2 and 5th segments.

Fig. 7. An example concerning the segments.

The final adjustment is related to annotations. Since

information in videos is quite "raw" and dispersed, it is almost
impossible to achieve semantic content-based access to videos
unless some additional information is available. In order to
enable flexible and intelligent access to videos, we somehow
need to extract "keywords" which describe semantic contents
of videos. Typically "keywords" are useful for semantic
content-based access to videos include information on:

− what/who appears in the video,
− when the video was broadcast/recorded,
− where the video was recorded,
− what the video is about, etc.
In order to achieve this goal, more annotation is required

such as object annotation, person annotation, location
annotation, event annotation, caption and image. The first four
annotations lend themselves naturally as annotations since
they answer four key questions who, what, when and where
about a video. Caption annotation is broadly used in news
video databases where this kind of information exists on
almost video news. A video database application rarely uses
image annotation because of poor image processing
performance. However, it is utilized in some special video
databases such as airport and gas station security systems to
scan for unusual baggage and terrorist activity.

IV. FLEXIBLE ACCESS CONTROL MODEL
In this paper, a content-based access control model is

suggested which is reliant upon high level features extracted
during the video processing stage. The goal of the system is to
provide a flexible framework that can support different
security levels against the video database.

The architecture of the system is illustrated in Fig. 8. There
are three main components within this architecture:
authorization, query engine and authorization management.
The authorization component is responsible for filtering
authorized videos while the query engine searches for
interesting videos that a user has requested. The final
component, authorization management, handles granting
permissions and ensures the consistency and integrity of the
video database system.

Fig. 8. Video database flexible access control architecture.

A. Authorization Model
In this section, an authorization model based on a flexible

authorization model suggested by Bertino et al. in [2], [3] is
introduced. The proposed model provides both multiple access
control polices and a multi-level access control mechanism.
This model also allows the administrator to specify multiple
authorizations over any users or user groups (named subject of
the authorization) against any video level such as videos,
scenes or video shots.

1) Notation and Definitions

This new model manages access control via authorizations.
The subject of each authorization is a user or a user group. A
group can contain some users and/or other user groups. The
relationship between a subject s and a user group Gk can be
either direct or indirect [2]. If s is a member of Gk, we count
this relationship as direct, written s ∈1 Gk. In contrast, the
relationship is indirect, written s ∈n Gk, n > 1, if there exists a
sequence <s1, s2, …, sn+1>, such that s1 = s, sn+1 = Gk and si∈1

si+1, 1 ≤ i ≤ n. The sequence <s1, s2, …, sn+1> is called a
membership path of s to Gk, written mp(s,Gk). Let MP(s, Gk)
represent a set of memberships of s to Gk, either direct or
indirect.

Fig. 9. An extended tree of users and user groups.

In a similar manner for users, the video content of our
system is also organized into an extended tree structure. Let V,
VG and VO represent the videos, video groups and video

G1

G3 G2

B C

G4

A

AUTHORIZATION
MANAGEMENT

AUTHORIZATION

QUERY ENGINE

Video
Database

Permission
Database

USER

Authorized
video

Query request

Query result

Granting
permissions

Frame sequence of video shot V

Frames j+1 and j+2 are
invisible to the user A

Object X is blurred
under user B’s angle

j j+1 j+2 j+3 i i+1 i+2 i+3 i+4

X

54Polibits (38) 2008

Nguyen Anh Thy Tran and Tran Khanh Dang

objects (frames or salient objects) respectively. A video group
can contain videos and other video groups. We use v ∈k vg to
denote the relationship where v belongs to vg with a
relationship type that is direct (k = 1) or indirect (k > 1). We
also use mp(v,vg) to represent the membership path of v to vg
and MP(v,vg) stands for the set of all paths of v to vg.

Fig. 10. A sample hierarchical video database.

Authorization handles whether a user or user group can
access (positive authorization) or cannot access (negative
authorization) a video element. The authorization model
within this article is based upon the multi-level video access
control model described in [3]. However, within this new
system, the target of each authorization can be a node on the
video content tree instead of a single table. Also supported are
two kinds of authorization called hard (authorization that
cannot be overridden) and soft (authorization that can be
overridden). For example, the authorization that an under 18
years of age user not be able to view some specific shots of
the videos without any exception should be a hard one.

Let U denote all users, G the set of user groups, S = U ∪ G
the set of all subjects, V the set of video contents, VG the set
of video groups, VD = V ∪ VG ∪ VO the set of all video
elements, AZ the set of all authorizations in our system.
Authorizations can be defined as follows.

Definition 1 (Authorizations): An authorization is a 5-tuple
of the form (s, v, pt, g, at) where s ∈ S, v ∈ VD, pt ∈ (+, -), g
∈ U, at ∈ {soft, hard}.

The authorization states that s has been granted (if pt =
“+”) or denied (if pt = “-”) access permission on video
element v by user g with authorization type is at (soft or hard).
For example, the tub (A, VG4, +, B, hard) means the user B
has granted access permission on video group VG4 to user A
with authorization type is hard. Given an authorization a, let
s(a), v(a), pt(a), g(a), at(a) denote the subject, target, access
type, grantor and authorization type, respectively.

Since a user can belong to a number of different user
groups, he or she can be affected by multiple authorizations
and some of them have opposite access types over a video
element. It is the reason why we need to define the rules to
decide which authorization has more priority than the others
in case the conflict happens. Our overriding authorization
model is a user-driven one means it prioritizes the
authorizations based on the relationship between their
subjects. The authorization has a more detail subject will have
higher priority.

Definition 2 (Overriding authorization): Consider pi and pj
are two different authorizations, pi overrides pj over user s

against video element ve, written pi >s,ve pj, s ∈m s(pi), s ∈n
s(pj), m,n ≥ 0, ve ∈l v(pi), ve ∈k v(pj), l, k ≥ 0, iff any of the
following conditions is satisfied:

− at(pi) > at(pj), means at(pi) = hard and at(pj) = soft
− at(pi) = at(pj) and s = s(pi), s != s(pj)
− at(pi) = at(pj) and (∀mp ∈ MP(s, s(pj)): s(pi) ∈ mp or

∃s’ ∈ mp, ∃ p’ ∈ AZ, s’ ≠ s(pj), s’ ∉k s(pi), p’ >s’,ve pj)

The above definition can be explained as the followings:

− pi override pj if the authorization type of pi is hard
while pj’s authorization type is soft.

− pi override pj if pi and pj have the same authorization
type and pi is applied over s directly while pj is not.

− pi override pj if pi and pj have the same authorization
type and for all membership path mp of s to s(pj), either
s(pi) ∈k mp or exists s’ ∈ mp, p’ ∈ AZ and p’ override
pj over user s against video element ve.

Example 1: Consider a video database that contain the
below set of authorizations:
 p1: (G1, VG1, -, C, 1, soft)
 p2: (G1, VG4, -, C, 1, hard)
 p3: (G2, VG1, +, C, 1, soft)
where G1, G2, G3, C are users and user groups in Fig. 9 and
VG1, VG4 are video elements in Fig. 10. In this example, user
A is affected simultaneously by p1, p2 and p3 authorizations.
From p1, A can access VG1 whereas p1 does not allow A to
access VG1. Because G2, subject of p3, has more detail than
G1, subject of G1, so p3 overrides p1 over user A and video
element VG1. In addition, p2 authorization is a hard one so it
will override all other authorization, including p3. In this
example, user A can only access VE1.

Definition 3 (Conflict): Two authorizations pi and pj are
conflict with respect subject s and video element v, written pi
<>s,v pj, with s ∈m s(pi), s ∈n s(pj); v ∈l v(pi), v ∈k v(pj); i, j, l, k
≥ 0, iff pt(pi) ≠ pt(pj) and neither pi >s,v pj nor pj >s,v pi.

In our system, we avoid any conflict by checking any
actions that may cause the conflict. The detail of this task will
be described in section C.

2) Authorization Algorithm

To make sure the users can only view video contents they
allowed to access, we suggest an algorithm to retrieve the
appropriate videos based on the actor and the set of
authorizations in the system. Firstly, we define some more
definitions will be used in this section.

Definition 4 (Video database projection): The projection of
a video database VD with respect to a video element ve,
written ∏ve(VD), is a set of video vei such that vei ∈k ve, k ≥ 0.
It means ∏ve(VD) only contains the child nodes of ve in the
hierarchical video tree.

 ∏ve(VD) = {v: v ∈ VD, v ∈k ve, k ≥ 0} (5)

Definition 5 (Video database prune): Consider a set of
videos VS = {ve1, ve2, …, ven}, the result after VS is pruned,

VE2

VD

VG VG3 VG2

VG4 VE1

VE4 VE5

VE3

55 Polibits (38) 2008

An Extended Video Database Model for Supporting Finer-Grained Multi-Policy and Multi-Level Access Controls

written ∠(VS), is a set contains the elements of VS and each
one is not a child of any other elements inside VS. It can be
described formally as follow.

 ∠(VS) = VS – {vi: vi ∈ VS, ∃vj ∈ VS, vi ∈k vj, k > 0} (6)

The purpose of the prune operator is to filter the nodes and
to keep only nodes at highest levels in the tree. We define this
operator because if a user can access a video element, he or
she will be able to access all its children in the video tree. For
instance, ∠{VE2 ,VE4, VE5, VG2, VG3} = {VG2, VG3}.

Next is the algorithm to filter the list of video contents that
a user can access. First of all, it will get all video elements
granted to the user by positive authorizations. Then, it collects
the video elements that are inaccessible to that user. This list
contains all video elements that were granted by negative
authorizations except the video contents that the negative
authorization is overridden by a positive one.

ALGORITHM 1. FILTER VIDEO CONTENTS THAT A USER CAN ACCESS

METHOD authorizeVideo(u)
 initialize AV to be empty
 let pos_permission and neg_permission are lists of

positive and negative permissions respectively
 let UV is a list of videos that the user cannot access
 let TV is a temporary list of videos
 for each permission p ∈ P do
 if (u ∈k s(p)) then
 if (pt(p) = +) then
 add p to pos_permission
 else
 add p to neg_permission
 endif
 endif
 endfor
 for each permission p+ ∈ pos_permission do
 AV = AV ∪ v(p+)
 endfor
 for each permission p- ∈ neg_permission do
 uv = v(p-)
 for each permission p+ ∈ pos_permission do
 TV = ∠(∏v(p+) ∩ ∏v(p-))
 for each video element ve ∈ TV do
 if (p+ >u,ve p-) then
 uv = uv – ve
 endif
 endfor
 endfor
 UV = UV ∪ uv
 endfor
 AV = ∠(AV – UV)
 return AV
END AUTHORIZEVIDEO

Fig. 11 illustrates the meaning of this algorithm. In this
figure, AV represents all video elements the user was granted
access permission. UV represents the video elements the user
was denied access permissions. TV = AU ∩ UV represents the

video elements belong to both accessible and inaccessible
ones. vi ∈ TV is a video element that was granted by the
positive permission p+ and negative permission p- and p+
override p-. Finally, that user can access all videos belonging
to orange parts (left).

Fig. 11. An illustration of algorithm 1.

B. Query Engine (Video Retrieval)
This component collects requests from end users and

searches through the authorized videos to retrieve those
relevant and returns them to the users.

Fig. 12. The access control model under:
(a) querying mode and (b) browsing mode.

The query engine must be reliable, meaning that users can

only access those videos to which they have been granted
permission. The component must also be flexible, in order to
support various means for the users to reach their interesting
videos. Bertino et al. [2] suggested a system to support two
access methods named querying and browsing. Under the
querying method, users request specific video shots based on
some criteria. By contrast, under browsing mode, users
browse through and navigate the video database through its
semantic categories. Based on the previous result, we

Username, password

User requirements

Browsing requirement

Hierarchical Nodes with
ICON Images in Indexing tree

Videos with visited ICON

Videos
on disks

Read/write
filtering

Authorized
browsing results

Authorization

Username, password

User requirements

Querying requirement

Similarity search on
Indexing structure

Query results

Videos
on disks

Read/write
filtering

Authorized query
results

Authorization

AV vj
vk vi

TV

UV

(a)

(b)

56Polibits (38) 2008

Nguyen Anh Thy Tran and Tran Khanh Dang

introduce two adapted algorithms for the same problem with
respect to our newly proposed video database schema. Fig.
12a and 12b illustrate the phrases in querying and browsing
mode respectively. As can be seen from the diagrams, both
algorithms include an authorization phase as described
previously in section A. Next, we will present the two access
methods described above in more detail.

1) Querying Mode

Under the querying mode access control, a user submits a
query to require the access to a video element. A query is a n-
dimensional tuple (x1, x2, …, xn) of which xi, i = 1.. n is a value
of the ith feature. Below is the algorithm to retrieve video
elements based on the features input.

ALGORITHM 2. QUERYING ACCESS CONTROL MODE

INPUT:
 User ID
 A query with (x1, …, xn) format where xi is a feature’s
value
OUTPUT:
 AIV (authorized interesting video) – set of authorized

filter video elements or
 ACCESS_DENIED if there is no video matches the
query
METHOD queryVideo(u, (x1, …, xn))
 AV = authorizeVideo(u)
 if (AV is empty)
 return ACCESS_DENIED
 else
 AIV = solve_query(request, AV)
 if (AIV is empty)
 return ACCESS_DENIED
 else
 return AIV
 endif
 endif
END queryVideo
 This access control procedure consists of two main steps:
(1) Firstly, it narrows the search space by filter a list of

videos the user can access;
(2) Secondly, it calculates all matching ranks between each

video element in the AV list and the input query. Then,
the system returns the result which will be videos
ordered by their similarities with the input query.

 This is a change compare to the original algorithm
introduced in [2]. The original algorithm calculates matching
ranks first then filters the list based on authorization rules.
Here we have reversed this sequence in order to reduce the
search space as soon as possible.

 ‘Solve_query’ takes x = (x1, x2, …, xn) as an input and
calculates the similarity between the x vector and each
authorized video. Then, it only keeps N videos which have the
highest similarity measures which exceed a predefined
threshold. The most popular features used for searching would
be the video group, location (the ‘where’), produced date (the

‘when’), related persons (the ‘who’), texts, pictures and audios
(the ‘what’). These features were extracted from the contents
of videos while they were being processed. This is the reason
why the access model presented is called a content-based
video retrieval model. Each feature may be defined a weight
representative of its importance level compared to others.
Similarity between a video v and a feature vector x is defined
as below.

∑

=

=
N

i
iii wxvmatchxvrank

1
*),(),((7)

where vi represents for the ith feature of video v and wi is xi’s
weight.

 Matching video group, location, date, person features are
quite simple since they are obviously matched (match = 1) or
unmatched (match = 0). For example, if video v belongs to
sport group then match(v, ‘sport’) = 1. In contrast, matching
text, image and audio features is difficult since they require
text processing, image processing and audio processing
knowledge, respectively.

 When extracting text, it is split them into words and only
the keywords s are stored. That is, words appearing more
frequently than a given threshold. To calculate the similarity
between an input string containing n keywords {k1, k2, …, kn}
and a video v, we use the formula below.

)(*),(),(

1
i

n

i
i kwvkcountvsmatch ∑

=

=

(8)

where count(ki,v) returns number of appearance of ki word
inside video v and w(ki) is weight value of ki.

 For the produced date, the matching value is bigger when
the video is newer and vice versa. Give d is the interesting
date that a user wants to query the videos, the distance
between a video v and d is calculated as below.

datedate

dd
vdmatch v

minmax
||

),(
−

−
=

(9)

where vd id the date when v is produced, max_date is the
produced date of the newest video and min_date is the
produced date of the oldest video in the search space.

 There are some variants of audio retrieval methods such as
query by keywords and query by examples. Query by
keywords applies to audio content and basically follows the
same approach used in traditional text based information
retrieval. The user provides several keywords as search terms,
and the query engine compares them with the textual
information attached with audio files in the database to
determine the list of returns. Query by example is a more
natural way for retrieving audio content. For example,
suppose we are looking for a music masterpiece. We have no
clue of the title, but we have a short portion of it, for example,
a 10 second clip. We can use this piece of audio sample,
normally in the format of a file, as a query object. The search
engine analyzes the content of query example, computes
acoustic features, compares the audio content with audio files

57 Polibits (38) 2008

An Extended Video Database Model for Supporting Finer-Grained Multi-Policy and Multi-Level Access Controls

in the database, and then generates search results accordingly.
The major issue of this query method is how to speed up the
search procedure.

 Some modern video databases support image searching,
especially faces tracking. For example, camera systems in
airports are responsible for detecting unusual objects such as
unattended bags or terrorist activity. These systems must
discover the above items in quick time in order that security
guards will have the ability to react. To improve searching
performance, the data needs to be prepared offline using
machine learning methods like neural network and support
vector machines, etc.

2) Browsing Mode

Under the browsing access control mode, a user browses
and navigates through video groups without specify searching
criteria. Browsing refers to a technique or a process where
users skip through information rapidly and decide whether the
content is relevant to their needs. Browsing video databases
should be like scanning the table of contents and indices of a
book, or flipping through the pages, to quickly get a rough
idea of the content and gradually focus on particular chapters
or sections of interest. We believe the proposed semantic
clustering technique and cluster-based hierarchical indexing
structure would be very suitable for such fast browsing.

C. Authorization Management
The main purpose of authorization management component

is to maintain the consistency and integrity of the system. It is
responsible for validating all actions that may cause
unsolvable conflicts to occur. Consider the example used in
definition 3, where two authorizations p1 and p2 are conflict if
exist a video element ve and a user u affected by them and
neither p1 >u,ve p2 nor p2 >u,ve p1.

With two types of authorization–soft and hard, we may
have three kinds of relationship between the authorizations:
hard–hard, hard–soft and soft–soft. The second relationship
(hard-soft) cannot be a conflict because a hard authorization
always overrides a soft one. In addition, to prevent the
conflicts between hard authorizations, this newly proposed
system would only accept negative hard authorization. This
means all positive authorizations have a soft property.

 softpatpptPp =⇒+=∈∀)()(,)((10)
This restriction is quite natural because we might often

prohibit a user from accessing to some kinds of videos and
rarely do we force a user to always access some particular
videos.

Finally, there is only the last relationship, soft – soft, needed
to be verified for conflicts. Below are four actions of an
administrator that may cause a conflict to occur:

− Adding a new authorization.
− Adding an existing user subject to a group.
− Adding an existing video element to a group.
− Deleting an existing authorization.

To support checking the consistency of the system, we
define a new term named general conflict as follows.

Definition 6 (General conflict): Two authorization p1 and
p2 are generally conflict, written p1 <> p2 if exists at least
one video v and one user u such that p1 <>s,v p2.

For each kind of action, we suggest a different algorithm to
check conflict individually.

1) Check Conflict when Adding a New Authorization

When a new authorization p(s, v, pt, g, at) is added to the
system, a conflict may occur over children nodes of s in the
user tree. Consequently, the system must verify the conflict
between p and each authorization p’ affects any children of s.

ALGORITHM 3. CHECK CONFLICT WHEN ADDING A NEW AUTHORIZATION

INPUT:
 Authorization p: (s, v, pt, g, soft)
OUTPUT:
 True: if the system still is consistent means there is no

conflict happens
 False: otherwise
METHOD checkNewPermission(p)
 PP = empty
 for each s’ ∈ ∏(s)
 for each p’ ∈ P
 if (pt(p’)≠ pt(p)) and (∏v(p’)∩∏v(p)≠φ) and
 (s’∈ks(p’))
 PP = PP ∪ p’
 endif
 endfor
 endfor
 for each p’ ∈ PP
 if p’ <> p
 return False
 endif
 endfor
 return True
END checkNewPermission
The first step in the above algorithm is to collect a list of

authorizations needed to be verified for conflict against p.
This list includes all authorizations p’ which i) has opposite
access type compared with p, ii) p and p’ affect to at least one
video element, iii) subject of p’ is an ancestor of s’ or its
children. The second step verifies conflict of each
authorization in the above list against p. This algorithm will
return False whenever a conflict occurs. Otherwise, it returns
True meaning the new added authorization is valid.

We will use Fig. 12 to explain the algorithms in this section
and the next two sections. The video database in this figure
contains five existing authorizations listed {p1, p2, p3, p4,
p5}. When adding a new authorization p6 which restricts the
permissions of G5 over V1. Based on the algorithm, PP
contains three authorizations {p1, p2, p4} needed to be
verified conflict with p6. Authorization p3 does not belong to
this list because it has the same access type as p’s. We also
don’t need to verify p5 because it and p6 affect to two disjoin

58Polibits (38) 2008

Nguyen Anh Thy Tran and Tran Khanh Dang

video set. On completion, the algorithm returns False because
there is one conflict between p6 and p4 over user D and video
group V1.

Fig. 13: A video database with some authorizations.

We are now proving that our algorithm is correct and

sufficient. Assume that the algorithm is wrong, meaning there
exists an authorization named p’: p’ ∉ GP and p’ <> p.
Another assumption is that there is an authorization p’
conflicts with p and the system still is consistent.

With the first assumption, because p’ ∉ GP we infer that
∏s(p’) ∩ ∏s(p) = ∅ or ∏v(p’) ∩ ∏v(p) = ∅. This means p
and p’ have two separated affected spaces. Therefore, they
cannot conflict with each other and hence, this assumption is
incorrect.

With the second assumption, let (u,v) be a pair of user and
video where the conflict happens between p and p’. The
system still is consistent means there is at least one
authorization p1 that satisfies p1 >u,v p or p1 >u,v p’. If p1
overrides p over (u,v), we can infer that p’ also overrides p
over (u,v) based on the last item in the authorization
definition: ∀mp ∈ MP(u,s), ∃u ∈ mp, p1 >u,v p. Similarly, if p1
override p’, we can also infer that p overrides p’, too.
Anyway, p’ and p are not conflict so this assumption is not
correct.

2) Check Conflict when Adding an Existing User Subject to a
Group

When adding an existing user or user group s to other user
group g, s will inherit all authorizations affect to g. Thus, we
need to check conflict between a set contains the
authorizations affect to g, named GP, and another set SP
contains the authorizations affect to s and its children.
Naturally, this algorithm collects the authorizations of GP and
SP first and then checks conflict between every each pair in
those two sets.
ALGORITHM 4. CHECK CONFLICT WHEN ADDING AN EXISTING USER SUBJECT TO A

USER GROUP

INPUT:
 s: user or user group
 g: user group where s will be added to
OUTPUT:
 True: if the system still is consistent means there is no

conflict happens

 False: otherwise
METHOD checkMoveMember(s, g)
 SP = empty
 GP = empty
 for each p ∈ P and g ∈k s(p)
 GP = GP ∪ p
 endfor
 for each p ∈ P and s ∈k s(p)
 SP = SP ∪ p
 endfor
 for each p ∈ SP
 for each p’ ∈ GP
 if pt(p’) ≠ pt(p) and ∏v(p)∩ ∏v(p’) ≠ ∅
 return False
 endif
 endfor
 endfor
 return True
END checkMoveMember
In Fig. 13, if we add the user group G7 to G3, two possible

conflict authorization sets are GP = {p1} and SP = {p2, p5}.
Since neither p1 conflict with p2 nor p5, G7 will be added to
G3 successfully.

3) Check Conflict when Adding an Existing Video Element to
a Group

Assuming that we are adding an existing video element v to
a video group vg. The fact that two authorizations p1 and p2
can only conflict if they affect at least one common video,
means we only verify conflict between the authorizations
affecting v and all its child nodes in the video tree. Below the
algorithm is presented in detail.
ALGORITHM 5. CHECK CONFLICT WHEN ADDING AN EXISTING VIDEO ELEMENT TO

A GROUP

INPUT:
 v: a video element
 vg: video group where v will be added to
OUTPUT:
 True: if the system still is consistent means there is no

conflict happens
 False: otherwise
METHOD checkAssignVideo(v, vg)
 PP = empty
 for each vi∈ ∏ v
 for each p ∈ P and vi ∈k v(p)
 PP = PP ∪ p
 endfor
 endfor
 for each pi ∈ PP
 for each (pj∈PP) and (pt(pi)≠pt(pj)) and
 (∏v(pi)∩∏v(pj)≠∅).
 if pi <> pj
 return False
 endif
 endfor
 endfor

G0

G1 G2

G5

G9

G4 G3

G8 G7 G6

B A C D E

p1(+) p2(+)

p3(-)

p4(+)

p5(+)

p6(-)

V0

V1 V2

V4 V3 V5

V6

59 Polibits (38) 2008

An Extended Video Database Model for Supporting Finer-Grained Multi-Policy and Multi-Level Access Controls

 return True
END checkAssignVideo
In Fig. 13, if we add the video group V2 to V0, the possible

conflict authorization set is PP = {p1, p2, p4, p5} and SP =
{p2, p5}. Since there is no conflict that occurs between any
pair of authorizations of PP list, V2 is added to V0
successfully.

4) Check Conflict when Deleting an Authorization

When an authorization p(s, v, pt, g, at) is deleted, s and its
children will be affected again by the authorizations p’ which
was overridden by p. Consequently, we must check the
conflict between a set containing the authorizations affecting
s, named SP, and another set CP containing the authorizations
affecting s and its children.

ALGORITHM 6. CHECK CONFLICT WHEN DELETING AN AUTHORIZATION

INPUT: Authorization p: (s, v, pt, g, soft)
OUTPUT:

True: if the system still is consistent means there is no
conflict happens

 False: otherwise
METHOD checkDeletePermission(p)
 SP = empty
 CP = empty
 for each p’ ∈ P and s ∈k s(p’)
 SP = SP ∪ p’
 endfor
 for each s’ ∈ ∏(s)
 for each p’ ∈ P and s’ ∈k s(p’)
 CP = CP ∪ p’
 endfor
 endfor
 for each p1 ∈ SP
 for each p2 ∈ CP
 if pt(p1) ≠ pt(p2) and ∏v(p1)∩ ∏v(p2) ≠ ∅
 return False
 endif
 endfor
 endfor
 return True
END checkDeletePermission

V. SYSTEM PROTOTYPE AND EVALUATION
In order to establish the practical importance of our

extended video database model and novel access control
mechanism, we implemented a system prototype and carried
out empirical evaluations with real-world datasets. The
prototype and experimental results are presented below.

A. Choosing the Database Management System
For supporting digital video, the chosen Database

Management System (DBMS) has to provide a multimedia
data types such as image and video. In our framework, the
video data type will be used to store the StoredVideo entities
(cf. Fig. 6). Neither the BLOB (Binary Large Object) nor the

file solutions are satisfactory because they could not provide a
mechanism to identify, retrieve and use a small piece of a
stored video segment. The file-based solution brings along the
additional solution of managing data that is not fully under
control of the DBMS. It will usually be more difficult to
maintain the consistency of the system and in some cases
impossible to provide necessary access restriction.

Due to these reasons, after considering popular commercial
DBMSs, we decided to choose the Oracle interMedia to
implement our video database by using its new multimedia
data types such as ORDImage and ORDVideo. The first one,
ORDImage data type, supports storing and image matching
that is ideal for content-based retrieval. While the second one,
ORDVideo data type, allows us to retrieve a part of the whole
video stream and also to define the video stream’s quality via
the bit-rate parameter.

B. The Access Control Model
Implementing the browsing mode is quite simple because

we only need to implement algorithm 1, authorizeVideo. In
contrast, in addition to authorization problem, the query mode
require us more efforts to refine the solve query algorithm.
Fig. 14a and 14b are the screenshots of our system with the
query and browsing modes.

(a) Querying mode.

(b) Browsing mode.
Fig. 14. Video retrieval pages.

The videos shown in Fig. 14a are the ones that match the
criteria entered by a user and sorted by the distances between
their contents and the input query which contains keyword,

60Polibits (38) 2008

Nguyen Anh Thy Tran and Tran Khanh Dang

video group, produced date, event, location, object, person,
caption and image. Since the expressions for matching video
group, location, produced date, person, object and texts
(caption and keyword) had been presented in section B, hence,
in this section, we will suggest a formula for the last query
element, the image.

 100
weight)),Iore(i,evaluateSc

ingnature..ORDImageSmax(ORDSYS

1),(j−=vimatch

(11)

where ORDSYS.ORDImageSingnature.evaluateScore is a
built-in function of Oracle interMedia. It returns the distance
between two images, 0 if they are identity and 100 if they are
totally different. In this formula, Ij stands for the jth key frame
of the video v and weight has a value of “color=1, texture=0,
shape=1, location=0”, meaning we only focus on the color
and the shape while searching. In this case, we compare the
input image and every key frame of the video v to find out the
maximum similar frame. There are a number of previous
works that deal with estimating the similarity between two
data objects. Interested readers are directed to [8], [13], [7].

C. The Permission Management Model
In our system, we allow a user to specify a permission at

any user level (user or user group) against multiple video
levels (video group, video, scene, shot, segment and object).
In addition, we implemented a strict permission management
system, meaning there is no conflict accepted. It always
checks the conflict occurrence when an actor adds/edits
permissions, a user/user group, or a video/video group. When
a conflict happens, a message is shown that indicates exactly
which user and video generated the conflict. Fig. 15 shows a
screenshot of the permission management page.

Fig. 15: Permission management page.

D. Preliminary Experimental Results
The data set has been used to validate the accuracy and

performance of the system includes 142 video clips extracted
from movies, news and sport clips that fill up 2.8GBs of
memory. The Movies are divided into three groups named

Action, Children, and Music movies while Sport category
contains Football, Tennis and Others groups. Below we
present the video list in detail.

TABLE I.
EXPERIMENTAL DATASETS

Video group Subgroup Number of Video

Action movies 35
Music movies 17

Movies

Children movies 20
News 25

Football clips 25
Tennis clips 10

Sport

Other clips 10

There are three user groups access to this video database

including: Adult, Children and Disabled groups. To fully
control the access of the above groups over the scenes, 11
Action movies have been separated into multiple shots (about
5 shots for each one) and 19 shots are duplicated in order to
hide some inappropriate objects. Totally, to efficiently control
the access, there are 100 MB of memory added to store the
extra shots.

We implemented the prototype using Visual Studio 2005
with Visual Basic/.NET. All the tests were tackled on a laptop
with an Intel Pentium M processor 1.73 GHz running
Windows XP/SP4, 512 Mbytes of shared memory and some
Gigabytes of hard disk capacity. The disk page size was 8Kb
for the datasets. With respect to the system performance, we
tested and collected the intervals to query the videos, to add
new permissions and to retrieve a video. Table 2 shows
experimental results for these operations over our datasets.

TABLE II.
EXPERIMENTAL RESULTS

Action Condition Time Description
No permission in
our system

5 ms

There are 10
existing permissions

40 ms

Add a new
permission

There are 40
existing permissions

120s

Query using text
criteria (title, actor’s
name, etc.)

43 ms With 12 videos
returned
(averagely)

Query
video
database

Query using image
field

94 ms With 3 rows
returned
(averagely)

Retrieve a
video

There are 15
concurrent users are
viewing videos

12 ms

It is obvious from the above results that there are two items
that have poor performance and need to be improved. Firstly,
time to check conflict when adding a new permission is huge,
especially when there are many existing permissions in the
system. Secondly, querying using image also consumes too
much time. To solve these problems, we need to study an

61 Polibits (38) 2008

An Extended Video Database Model for Supporting Finer-Grained Multi-Policy and Multi-Level Access Controls

efficient way to check conflict between two permissions and
to compare two images. The correctness of our system’s
access control mechanism is proved by the fact that the system
is robust at controlling access to the database since every user
can only query the authorized videos and no “false hits”
occurred in the tests.

VI. CONCLUSION AND FUTURE WORK
In this paper, our main contribution is twofold: (1)

Proposing an extended storage model for video data to support
semantic visual concepts clustering and flexible content-based
retrieval, and (2) Introducing a novel and flexible access
control mechanism to support both multi-policy and multi-
level access control in the newly proposed video databases.
Our access control approach combines video indexing
mechanisms with a hierarchical organization of video
contents, so that different classes of users can access different
video elements or even the same video element with different
versions on the basis of their permissions. Besides, robust
conflict checking algorithms have also been presented,
ensuring conflict-free authorizations in the whole system.
Preliminary experimental results with real-world datasets have
confirmed the effectiveness of our proposed solutions.

In the future, we plan to investigate the efficiency of the
proposed solutions with respect to the large video databases.
Also, we will apply results of this research to real-world
application domains such as surveillance and satellite video
databases.

REFERENCES
[1] N. Adam, V. Atluri, E. Bertino, E. Ferrari. A Content-based

Authorization Model for Digital Libraries. IEEE TKDE, 14(2), 2002,
296-315.

[2] E. Bernito, J. Fan, E. Ferrari, M-S. Hacid, A.K. Elmagarmid, X. Zhu. A
Hierarchical Access Control Model for Video Database Systems. ACM
TOIS, 21(2), 2003, 157-186.

[3] E. Bernito, S. Jajodia, P. Samarati. Supporting Multiple Access Control
Policies in Database Systems. IEEE Symp on Security & Privacy, 1996,
pp. 94-107.

[4] A. Baraani-Dastjerdi, J. Pieprzyk, R. Safavi-Naini. A Multi-level View
Model for Secure Object-oriented Databases. Data & Knowledge
Engineering, 23(2), 1997, 97-117.

[5] J. Calic, E. Izuierdo. Efficient Key-Frame Extraction & Video Analysis.
In: Proc. Int. Conf. on Information Technology: Coding & Computing,
2002.

[6] Chang S. F., Chen W., Zhong, D. A Fully Automatic Content-based
Video Search Engine Supporting Spatiotemporal Queries. IEEE Trans.
Circ. Syst. Video Tech, 1998, 1-4.

[7] Chen J., Taskiran C., Albiol A., Delp E., Bouman C. A Video Indexing
and Browsing Environment. In: Proceedings of SPIE/IS&T Conf.
Multimedia Storage and Archiving Systems IV, 1999, pp. 1-11.

[8] T. K. Dang. Semantic Based Similarity Searches in Database Systems
(Multidimensional Access Methods, Similarity Search Algorithms). PhD
thesis, FAW-Institute, Johannes Kepler University of Linz, Austria,
2003.

[9] S. Deb. Video Data Management and Information Retrieval. IRM Press,
2005.

[10] B. Furht, O. Marques. Handbook of Video Databases: Design and
Applications. Taylor & Francis Group, 2005.

[11] R. Hjelsvold, R. Midtstraum. Modelling and Querying Video Data.
VLDB 1994, pp. 686-694.

[12] K. Hoashi, M. Sugano, M. Naito, K. Matsumoto, F. Sugaya, and Y.
Nakajima. Shot Boundary Determination on MPEG Compressed
Domain and Story Segmentation Experiments for TRECVID 2004.
KDDI R&D Laboratories, 2004, pp. 7-12.

[13] H.-P. Kriegel, P. Kunath, A. Pryakhin, M. Schubert. MUSE: Multi-
Represented Similarity Estimation. In: Proc. 24th Int. Conf. on Data
Engineering (ICDE'08), Mexico, 2008.

[14] H. Kosch. Distributed Multimedia Database Technologies Supported by
MPEG-7 and MPEG-21. CRC Press, 2003.

[15] I.E.G. Richardson. H.264 and MPEG-4 Video Compression. John Wiley
& Sons, 2003.

[16] B. L. Yeo, B. Liu. Rapid Scene Analysis on Compressed Video. IEEE
Trans Circuits & Systems for Video Technology, 5(6), 1995, 533-544.

[17] J. Y. Zhang. Advances in Image and Video Segmentation. IRM Press,
2006.

[18] H. J. Zhang. Content-based Video Browsing and Retrieval. CRC Press,
1999.

[19] H. J. Zhang, A. Kankanhalli, S. Smoliar, S. Tan. Automatically
Partitioning of Full-Motion Video. Multimedia Systems, 1(1), 1993, 10-
28.

62Polibits (38) 2008

Nguyen Anh Thy Tran and Tran Khanh Dang

Resumen—Se presenta el diseño y simulación de un
multiplicador electrónico para encoders incrementales, el sistema
consiste en un decodificador que extrae el total de la información
contenida en la señal de cuadratura, esta información da
referencia para resoluciones en 1x, 2x y 4x. Este multiplicador
tiene como propósito elevar la resolución de la señal de
retroalimentación, empleando el mismo encoder. Se diseña
totalmente con circuitos digitales para su implementación en
lógica reconfigurable.

Palabras clave—multiplicador, encoder incremental,
resolución de la señal de retroalimentación.

ELECTRONIC MULTIPLICATOR
FOR INCREMENTAL ENCODER

Abstract—We present design and experiments on simulation of

the electronic multiplicator for incremental encoders. The system
consists in a decoder that extracts the total information contained
in the quadrature signal. This information is used as reference
for 1x, 2x and 4x resolutions. The purpose of the multiplicator is
to increment the resolution of the feed back signal using the same
encoder. It is designed completely in digital circuits for its
implementation in the reconfigurable devices.

Index Terms—Multiplicator, incremental encoder, resolution

of the feed back signal.

I. INTRODUCCIÓN
ctualmente, uno de los mayores retos en los sistemas
de instrumentación industrial, es el de mantener
precisión y robustez en la cuantificación de la

posición y velocidad de desplazamiento, esto, en las diferentes
partes que componen un sistema en general, o de forma
particular, una máquina o mecanismos de la misma [1].
Existen sistemas donde dicha cuantificación es directa, es
decir, el movimiento y la posición de las diferentes partes del
sistema, se pueden determinar a partir de la elección de un
sistema coordenado fijo a un origen; utilizando finales de
carrera y sensores intermedios para tal fin. Sin embargo, en

Manuscrito recibido el 19 de septiembre del 2008. Manuscrito aceptado

para su publicación el 25 de noviembre del 2008.
A. Cruz Contreras, Centro de Innovación y Desarrollo Tecnológico en

Cómputo del Instituto Politécnico Nacional, México, D. F. (teléfono:
57296000 Ext. 52536; e-mail: acruz@ipn.mx).

E. Portilla Flores, Centro de Innovación y Desarrollo Tecnológico en
Cómputo del Instituto Politécnico Nacional, México, D. F. (teléfono:
57296000 Ext. 52536; e-mail: edport22@gmail.com).

R. Silva Ortigoza, Centro de Innovación y Desarrollo Tecnológico en
Cómputo del Instituto Politécnico Nacional, México, D. F. (teléfono:
57296000 Ext. 52512; e-mail: rsilvao@ipn.mx).

sistemas como un brazo robot, esto, no es tan directo, por lo
que se utilizan dispositivos que permiten trasladar los
desplazamientos angulares de cada una de las articulaciones,
en una posición o desplazamiento total. Por otro lado, en
máquinas de Control Numérico por Computador (CNC), en
sistemas de control industrial o en mecanismos donde el
actuador principal es un motor; se debe convertir el
desplazamiento rotacional del actuador, en desplazamiento
lineal, con respecto a un sistema fijo.

Muchos de los esquemas de instrumentación para los
sistemas antes mencionados, están basados en la utilización
del transductor rotativo o lineal denominado encoder, debido a
su facilidad de implementación desde el punto de vista
mecánico, y a su relativo bajo costo de adquisición. Existen
varios tipos de encoders, sin embargo, los denominados
encoders incrementales, presentan gran demanda en las
aplicaciones de robótica y control retroalimentado de sistemas.

No obstante la sencillez de operación del encoder
incremental, un factor en contra de la utilización del mismo, es
la gran demanda de mayor resolución que exigen las
aplicaciones de hoy en día. Por lo que en el presente trabajo se
diseña un circuito multiplicador para encoder incremental, el
cual tiene como objetivo; elevar la resolución que ofrece un
dispositivo de forma general. Dicho multiplicador permite
aumentar la precisión en la determinación de posición y
velocidad, sin tener que cambiar el dispositivo actual.

El presente trabajo se organiza de la siguiente forma: en la
sección II se explica el funcionamiento básico de un encoder
incremental, haciendo énfasis en los aspectos importantes que
permiten desarrollar el circuito mutiplicador. La sección III
explica el desarrollo del circuito multiplicador por dos 2x para
el encoder incremental, con su respectiva simulación. El
circuito multiplicador por cuatro 4x es desarrollado en la
sección IV. En la sección V se discuten los resultados
obtenidos. Finalmente, las conclusiones del presente trabajo se
exponen en la sección VI.

II. FUNCIONAMIENTO DEL ENCODER INCREMENTAL
El encoder es un transductor rotativo que transforma un

movimiento angular en una serie de impulsos digitales. El
encoder se basa en la rotación de un disco graduado con un
retículo radial formado por espacios opacos, alternados con
espacios transparentes. Un sistema óptico de emisor receptor
infrarrojo detecta el cambio en la superficie del disco,
generando dos señales en cuadratura (defasadas 90°), las
señales se identifican como A y B (Fig. 1).

Multiplicador Electrónico
para Encoder Incremental

Agustín Cruz Contreras, Edgar A. Portilla Flores y Ramón Silva Ortigoza

A

63 Polibits (38) 2008

El encoder, como su nombre lo indica, es un dispositivo que
codifica información del desplazamiento y su dirección,
normalmente el mínimo desplazamiento es decodificado a
partir de un ciclo completo de la señal A o B. Observando
detalladamente la señal en cuadratura se puede apreciar que
hay información del desplazamiento en cada flanco de las
señales A y B [2], por lo que es posible decodificar la
información del desplazamiento y dirección, al doble y
cuádruple de la señal originalmente decodificada.
Incrementar la resolución de un encoder permite mayor
precisión con el mismo costo de dispositivo.

En las señales A y B en cuadratura se encuentra codificada
la información correspondiente al avance y su dirección, la
cual puede ser en el sentido de las manecillas del reloj
(Clockwise, CW) o en sentido contrario (Counterclockwise,
CCW).

Fig. 1: Señales en cuadratura.

La información correspondiente al desplazamiento se

obtiene directamente de A o B, un ciclo de la señal
corresponde al mínimo avance, se puede usar como referencia
el flanco de subida o bajada; para un encoder de 600 pulsos
por revolución el mínimo avance corresponde a
360°/600=0.6°. Para determinar la dirección del
desplazamiento se requiere de ambas señales; en la Fig. 2 se
tiene un circuito a través del cual se determina el sentido del
desplazamiento.

Fig. 2: Determinación del sentido de giro.

Se implementa con un Flip-Flop “D”, la señal A se emplea

como dato y B como señal de reloj, en el sentido CW
(izquierda a derecha) se captura continuamente un nivel alto,
esto, porque el flanco de subida de B coincide con el nivel alto
de A. Para el sentido CCW (derecha a izquierda) el flanco de
subida de B coincide ahora con el nivel bajo de A.

III. MULTIPLICACIÓN POR DOS (2X)
Las señales A y B presentan en los flancos de subida y

bajada puntos intermedios, estos puntos se pueden usar como
referencia para obtener valores intermedios, con los cuales se
puede incrementar la resolución original del encoder. Al tener
cuatro flancos intermedios en un ciclo de la señal en
cuadratura, la resolución del encoder puede ser multiplicada

electrónicamente por 2X y 4X. Para la multiplicación por 2X,
se deben considerar como puntos intermedios de referencia,
los flancos de subida y bajada de A, como se muestra en la
Fig. 3. El proceso de decodificación se puede dividir en dos
partes; en la primera se determina la frecuencia original
multiplicada por dos y en la segunda se determina la dirección
del desplazamiento.

Fig. 3: Flancos a considerar en 2X.

Para el caso 2X resulta muy sencillo determinar la
frecuencia final; usando una OR-EX con las señales A y B en
sus respectivas entradas, la salida será 2X, la Fig. 4 muestra el
circuito y simulación.

x2

A0

B0

U38A

74LS86A

1

2
3

(a)

(b)

Fig. 4: circuito para 2X (a), simulación (b).

Para determinar el sentido de giro en 2X será necesario
determinar el valor de las señales A y B, poco después que se
presentan las transiciones de subida y bajada en la señal A. En
el sentido CW (izquierda a derecha) en el flanco de subida
A=1 y B=1, en el de bajada A=0 y B=0. En sentido CCW (de
derecha a izquierda) en el flanco de subida A=0 y B=1, en el
de bajada A=1 y B=0. Lo anterior se muestra a través se
muestra el diagrama de estados para el caso 2X en la Fig. 5.

Fig. 5. Diagrama de estados para 2X.

64Polibits (38) 2008

Agustín Cruz Contreras, Edgar A. Portilla Flores y Ramón Silva Ortigoza

Ahora lo que se requiere es poder determinar el momento
en el que se presenta un flanco de subida o bajada; para poder
determinar la presencia de los flancos se pueden utilizar
circuitos monoestables, con estos se genera un pulso de
duración determinada, inmediatamente después de la
ocurrencia del flanco. El circuito monoestable es analógico –
digital, requiere de componentes externos como resistencias y
capacitares, pensando en una implementación con lógica
configurable, se requiere un circuito cien por ciento digital, el
uso de monoestables impide esta opción. A continuación se
presenta una alternativa totalmente digital.

Para la detección de de los flancos se emplea el circuito de
la Fig. 6a, en este circuito se aprovecha el tiempo de
propagación requerido por cada compuerta. La señal cuadrada
A se aplica a la compuerta OR-EX, en una entrada llega sin
retardo y en la otra se le aplica inversión y el retardo de tres
compuertas. Se puede decir que durante el tiempo de
propagación se tienen dos señales iguales; y la salida de la
OR-EX es cero, pasado el tiempo de propagación la señal en
ambas entradas de la OR-EX es diferente y la salida es uno.

En la Fig. 6b se muestra la simulación del circuito; se
aprecia como para cada flanco de la señal A0, se produce un
pulso en bajo, la duración de este pulso está determinada por
número de compuertas inversoras, en este caso son tres, y su
tiempo de propagación es aproximadamente de 40ns.

Salida
A0

U32A

74LS86A

1

2
3

U31A

74LS04

1 2
U33A

74LS04

1 2
U34A

74LS04

1 2

(a)

(b)

Fig. 6. Detección de flancos (a), simulación (b).

Para determinar el sentido del desplazamiento se utiliza la
misma idea que en el caso 1X; “muestrear la señal A con el
flanco de subida de la señal B”. Para el caso 2X es similar, a
diferencia de que para 2x se de deben muestrear las señales A
y B, con los flancos de subida y baja de la señal B.

En la Fig. 7 se muestra el diagrama para 2X, en este A y B
son datos, y la señal CK es obtenida a partir de cada flanco de
subida o bajada en B, se usa como señal del reloj para
muestrear A y B, la OR-EX determina un valor para señales
iguales y otro para diferentes, el cual es el criterio acorde con
el diagrama de estados para 2x, con lo que se tiene CW=0 y
CCW=1.

En la Fig. 8a se tiene la simulación de este circuito para el
caso CW, en 8b se tiene para CCW. Se puede ver que el caso
CCW presenta en la salida discontinuidades en su nivel alto,
esto es debido al tiempo de propagación de las señales, que
para este caso resulta indeseable. El problema del retardo se
puede eliminar implementado la salida DIR en modo
registrado.

HI

HI

HI

HI

CK

A0

A0

B0

CK

CK

Direccion

U3C

74LS86A

9

10
8

U16A

74LS86A

1

2
3

U4C

74LS04

5 6
U4B

74LS04

3 4

U9A

74LS74A

3

1

2

4

5

6
CLK

C
LR

D P
R

E

Q

Q

U7A

74LS74A

3

1

2

4

5

6
CLK

C
LR

D PR
E

Q

Q

U4A

74LS04

1 2

Fig. 7. Circuito para 2X.

(a)

(b)

Fig. 8. Simulación para CW (a), CCW (b).

El circuito de la Fig. 9a se tiene la implementación de la

salida DIR en modo registrado, para esto se usa un Flip-Flop y
la misma señal de reloj con un retardo adicional para dar
tiempo a la propagación de las señales. En (b) se presenta la
simulación, en ésta se puede ver a la señal de DIR con valor
constante.

65 Polibits (38) 2008

Multiplicador Electrónico para Encoder Incremental

HI

HI

HI

HI

HI

HI

CK

A0

A0

B0

CK

CK

CK

DIR

U4D

74LS86A

12

13
11

U4B

74LS86A

4

5
6

U3B

74LS04

3 4

U8A

74LS74A

3

1

2

4

5

6
CLK

C
LR

D PR
E

Q

Q

U11B

74LS04

3 4
U11C

74LS04

5 6

U3A

74LS04

1 2

U8B

74LS74A

11

13

12

10

9

8
CLK

C
LR

D PR
E

Q

Q

U6A

74LS74A

3

1
2

4
5

6
CLK

C
LR

D P
R

E
Q

Q

U1F

74LS04

13 12

(a)

(b)

Fig. 9. Salida registrada (a), simulación (b).

IV. MULTIPLICACIÓN POR CUATRO (4X)
Para el caso 4x de igual manera que en 2x la decodificación

se puede dividir en dos partes; determinación de la frecuencia
múltiplo de 4, y la dirección del desplazamiento.

Determinar la frecuencia múltiplo de 4 no es tan sencillo
cómo para el caso 2x, en 4x se debe generar un pulso en los
flancos de subida y bajada de ambas señales A y B. La Fig. 10
muestra que para el caso 4x se debe de tener en consideración
el evento de los flancos de ambas señales. En el circuito de la
Fig. 11 se obtiene un pulso por cada flanco de A y B, por
medio de la AND se unen las dos señales para integrar la señal
4x.

Fig. 10. Flancos para 4x.

A0

B0

x4

U12F

74LS04

13 12
U14A

74LS04

1 2
U14B

74LS04

3 4
U8B

74LS86A

4

5
6

U8D

74LS86A

12

13
11

U14C

74LS04

5 6
U14D

74LS04

9 8
U14E

74LS04

11 10

U2B

74LS08

4

5
6

Fig. 11. Detección de flancos en A y B.

La simulación del circuito anterior se puede observar en la

Fig. 12; se tienen la señales en cuadratura A y B, la detección
de flancos para A y B y la salida x4. En comparación de
señales 2x y 4x; 2x tiene un ciclo de trabajo del cincuenta por
ciento, 4x no cumple esta condición pero, no es ningún
impedimento para su aplicación.

Fig. 12. Simulación, detección de flancos en 4x.

Para obtener la señal de dirección se deben considerar como

el caso 2x los valores de A y B en cada flanco, en este caso se
consideran los flancos de A y B, y de igual modo se revisa
para CW izquierda a derecha y CCW derecha a izquierda.

Fig. 13. Diagrama de estados 4x.

Revisando los valores de izquierda a derecha se tienen los
siguientes estados: A=1 B=0, A=1 B=1 A=0 B=1, A=0 B=0,
en este caso son cuatro en 2x fueron dos. El diagrama de
estados de la Fig. 13 representa los estados y transiciones para
el caso CW y CCW.

Del diagrama de estados se obtiene la tabla 1, en esta se
tienen los estados presentes y siguientes para A y B, de los
diez y seis estados posibles únicamente se emplean ocho, los
restantes se pueden descartar plenamente dado que por la
naturaleza del sistema nunca serán presentes. Considerando
CW=0 y CCW=1 y estados no ocupados=X (no importa).

TABLA I.
CASO 4X

Estado presente Estado siguiente
B A b a DIR
0 0 0 0 x
0 0 0 1 CCW
0 0 1 0 CW
0 0 1 1 x
0 1 0 0 CW
0 1 0 1 x
0 1 1 0 x

66Polibits (38) 2008

Agustín Cruz Contreras, Edgar A. Portilla Flores y Ramón Silva Ortigoza

Estado presente Estado siguiente
0 1 1 1 CCW
1 0 0 0 CCW
1 0 0 1 x
1 0 1 0 x
1 0 1 1 CW
1 1 0 0 x
1 1 0 1 CW
1 1 1 0 CCW
1 1 1 1 x

De la tabla se genera el mapa de Karnaugh presentado en la

Fig. 14, a partir de este se obtiene la ecuación simplificada:
DIR=/Ba+Ab+/A/b

Fig. 14. Mapa de Karnaugh para 4x.

El circuito de la Fig. 15 muestra la implementación de la
ecuación para la Dirección, se usa una salida registrada para
eliminar valores erróneos debidos al retrazo en las señales,
como señal de reloj se utiliza la señal 4x con cierto retardo
para captar la salida.

Fig. 15. Circuito para la Dirección en 4x.

El la Fig. 16a y 16b se tiene la simulación para CWW y para
CW respectivamente.

(a)

(b)

Fig. 16. Simulación 4x, CWW (a) y CW en (b).

V. RESULTADOS
Se obtuvo un circuito decodificador para la señal en

cuadratura de encoders incrementales, el decodificador
proporciona la información del desplazamiento y su dirección,
en las resoluciones 1x, 2x y 4x.

La simulación muestra las señales para el desplazamiento y
su dirección en todas las resoluciones de acuerdo a lo
esperado, la simulación se realizó en Orcad Pspice, se
utilizaron circuitos TTL. En cuanto a velocidad; el sistema no
tiene restricción alguna cuando trabaja en baja velocidad, en
velocidad alta el sistema se ve limitado por la velocidad de los
circuitos empleados (TTL).

VI. CONCLUSIONES
El incremento de la resolución es posible dado que la

información existe en la señal de cuadratura; el proceso
consiste en una decodificación completa de la señal de
cuadratura, con el cual se extrae la información para 1x, 2x y
4x.

Incrementar a otro nivel la resolución, no es posible con
encoders de salida digital, para mayores resoluciones se
pueden emplear dispositivos con salida analógica; resolvers y
encoders con salida seno/coseno [3], [4], se encuentran
disponibles en el mercado.

La alta resolución que se puede obtener de estos
dispositivos, se basa en el hecho de que una señal analógica
tiene una resolución infinita, en estos dispositivos la
resolución depende de las características del convertidor, tales
como; velocidad y número de bits.

Existen en el mercado circuitos que realizan la
multiplicación por cuatro 4x (LS7083/7084), el presente
trabajo tiene como propósito un desarrollo con lógica digital
que permita llevar el diseño a circuitos de lógica
reconfigurable (FPGAs), para integrar en este mismo
dispositivo todo el sistema de control.

REFERENCIAS
[1] G. Liu, A. A. Goldenberg, Y. Zhang. Precise slow control of a direct-

drive robot arm with velocity estimation and friction compensation.
Mechatronics, Volume 14, Issue 7, September 2004, pp. 821-834.

[2] Optical encoders’ applications. Technical Articles, Computer Optical
Products, Inc., 1995.

[3] Kees van der Pool. High Resolution Optical encoders. Technical
Articles, Computer Optical Products, Inc. 1995.

[4] Sine/Cosine encoders, Technical Articles. Computer Optical Products,
Inc., 1995.

HI

HI

/B0

A1

A0

B1

/A0

/B1

x4

Direccion

U25A

74LS04

1 2
U24A

74LS04

1 2

U21A

74LS08

1

2
3

U2D

74LS08

12

13
11

U2C

74LS08

9

10
8

U18B

74LS74A

11

13

12

10

9

8CLK

C
LR

D PR
E

Q

Q

U19B

74LS04

3 4
U19C

74LS04

5 6

U23A

74LS04

1 2
U22A

74LS04

1 2

U20A

74LS32

1

2
3

U10D

74LS32

12

13
11

67 Polibits (38) 2008

Multiplicador Electrónico para Encoder Incremental

68Polibits (38) 2008

Abstract—In this paper, the authors present the concept of a
system for Distance Object Learning and Evaluation (DOLE),
which can be used during the teaching-learning process as a
virtual learning environment. The term Distance Object
Learning is used here for learning over a computer network or
the Internet about real world entities that are distinguishable
from others. The DOLE system concept uses standards for
Learning Object Metadata (LOM) at different levels of
abstraction. The objective of the resulting system is not only the
correct and retrievable description of the course material
covered by the LOM but also the further use of parts of the LOM
data set for the generation of learning materials and students'
learning development assessment, which can be represented by
quizzes and tests. The Distance Object Learning and Evaluation
system concept outlined in this paper is based in part on an
earlier version of an E-learning Assessment System for Young
learners (EASY). DOLE extends the concept of EASY by a
learning component and by posing system generated questions
with the help of a forward-chaining inference engine to find out
about a specific item (object) of the domain of instruction. As the
questioning process is bidirectional ("open" questions can be
asked by the system as well as by the learner), DOLE is more
targeted at advanced and adult learners than at young learners.
The ultimate goal is to use the DOLE system concept as a part of
a virtual college or university.

Index Terms—Distance learning, e-assessment, young learner,
rule-based system.

I. INTRODUCTION
ESSON in the teaching-learning process for distance
learning [1] are typically designed to help students to find

essential information or to carry out desired tasks, e. g. as
assignments. As information related instruction conveys
information about the domain of instruction there is no
specific skill to be learned during that process; for example, in
this part of the course the appearance of an object can be
described. The lessons for performance-based instruction on
the other hand, aim at resulting in improved procedural skills,
which the students are expected to train or work out during the
teaching-learning process [2].

Manuscript received May 29, 2008. Manuscript accepted for publication

October 28, 2008.
C. Snae is with the Naresuan University, Phitsanulok, 65000 THAILAND

(phone: +66-81-4755113; fax: +66 55 261025; e-mail: chakkrits@nu.ac.th).
M. Brueckner is with Naresuan University, Phitsanulok, 65000

THAILAND (phone: +66-89-4616110; fax: +66 55 261025; e-mail:
michaelb@nu.ac.th).

E. Hirata is with the Department of English, University of Birmingham,
Birmingham, (e-mail: exh411@bham.ac.uk).

To find out how much and how well students have learned
the material a number of formal and informal tools and
methods are used. For example, to formally evaluate student
learning, most teachers use quizzes, tests, examinations, and
homework, which help to assess the student’s level of
knowledge and to assign marks and grades.

A number of different techniques are used to assess
learning informally, such as teachers listening to students’
remarks and questions, teachers posing questions, and
observing body language and facial expressions. With these
informal assessments the teachers are able to adjust their
teaching better to the students’ needs. Slowing down the pace
of instruction or reviewing specific material of the teaching-
learning process as a response to students’ demands can
increase the learners’ motivation and learning outcome.

The distance learning-teaching process is somewhat
different to classroom teaching-learning process [3]; there are
no:

− traditional, familiar classrooms,
− more or less homogeneous groups of students,
− students' questions, comments, signs of body

language, and facial expressions, which the teacher
can observe face-to-face,

− ways to control the distance delivery system
completely,

− spontaneous ways to talk to students individually.
For these reasons, distance instructors may find it

appropriate to extend the formal evaluation process of the
students by testing and homework through using a more
informal approach in collecting data to determine:

− student comfort with the method used to deliver the
distant instruction,

− appropriateness of assignments,
− clarity of course content,
− how well class time is being spent,
− teaching effectiveness,
− the ways to improve a course,
− other types of evaluation.

Evaluation can be either formative, summative, or a
combination of both [4]. Relevant data are collected for
quantitative and qualitative analysis.

The formative evaluation:
− is an on-going process to be considered at all stages

of instruction.
− enables instructors to improve the course as they

proceed.

Distance Online Learning and Evaluation
Framework

C. Snae, M. Brueckner, and E. Hirata

L

69 Polibits (38) 2008

− facilitates the adjustment of course management and
materials.

− identifies gaps in the instructional plan or the need
for more adjustments.

Among the strategies used by instructors to collect
formative data from their distant students are e-mail, online
chat, and phone calls.

E-mail (electronic mail) is an asynchronous way of
communication and can be very effective for instructors and
students to communicate. Instructors can elicit and extend
material covered in the online course, and students can ask
questions or giving comments.

Online chat is a synchronous communication method and
can also be very effective in gathering informal data about
students’ learning achievement and motivation. As we observe
that almost all students use online chat for communication,
this method can be seen as a non-interrupting way to
communicate with students.

Teachers should call students often and ask them open
ended questions to let students voice their concerns. Follow
with probes (e.g., "Then, will you need more information
sources?"). Set phone-in office hours but be sure to welcome
calls at other times.

The summative evaluation:
− helps to evaluate the overall effectiveness of the

finished course and instructional material,
− can be a basis for developing a revision plan,
− can be a baseline of information for designing a new

plan, program, or course,
− does not help current students since can attend only

after having completed the course.
Quantitative evaluation uses statistical methods and can

evaluate data about large groups of people; under some
circumstances, a considerable number of data is needed to
come to statistically relevant results. Unfortunately, most of
the classes in distance learning courses are small, so that they
defy statistical analysis.

By definition and design, forced choice surveys offer
respondents a limited number of possible response options.
Therefore, new insights and novel perspectives that are not
inside the provided response set will not be reported.

The often tedious nature of quantitative data collection can
discourage formative evaluation, and leads to an over-reliance
on summative evaluation.

Qualitative evaluation uses a wider range of information,
which can be very specific und inhomogeneous, so the
categorization of the data can be cumbersome. Qualitative
evaluation does not depend so much on the size of the classes;
small classes are generally not problematic for getting useful
results [5].

For qualitative evaluation there are many different methods
of data collection available, such as open ended questioning
(e. g. respondents are asked to specify strengths and
weaknesses of a course and suggest modifications), participant
observation and non-participant observation (with the
instructor participating or not participating in class and

observing group dynamics and behavior), content analysis (the
evaluator using predetermined criteria to review course
documents including the syllabus and instructional materials
as well as student assignments and course-related planning
documents), and interviews (with a facilitator or specially
trained person gathering data through one-on-one and small-
group interviews with students).

Quantitative and qualitative evaluation can be used in
various areas of the teaching-learning process and learning
environment. Examples are:

− Course content (relevancy, organization of the
materials, adequate body of knowledge);

− Class formats (effectiveness of the lectures,
appropriateness of the lab assignments);

− Use of technology (attitudes towards technology,
familiarity with technology);

− Class atmosphere (conduciveness to student learning)
− Assignments (adequate level of difficulty, usefulness,

timeliness of feedback, time required for finishing);
− Tests (frequency, relevancy, sufficient review,

difficulty, feedback);
− Support services (facilitator, technology, library

services, instructor availability);
− Student achievement (adequacy, appropriateness,

timeliness, student involvement);
− Student attitude (attendance, assignments submitted,

class participation);
− Instructor (contribution as discussion leader,

effectiveness, organization, preparation, enthusiasm,
openness to student views).

There are also approaches, which can be seen as mixed
methods circumventing some of the drawbacks of the pure
quantitative and pure qualitative approach. These approaches
are mainly used outside the educational environment, such as
evaluating socio-economic programs and universities [6].

 Much effort has been spent for the technical reuse of
electronically-based distance teaching materials and in
particular creating or re-using Learning Objects [7]. Learning
objects (LO) are teaching units that are properly indexed
(tagged) with keywords, and maybe more metadata. LOs are
often stored in as XML files, which enable better indexing and
organizing structures. Creating a course requires putting
together a sequence of LOs [8].

A common standard format for e-learning content is
SCORM [9] whilst other specifications allow for the
transporting of "learning objects" (Schools Interoperability
Framework) or categorizing meta-data (LOM, [10]).

In this paper, we propose a framework for distance learning
and evaluation framework for Thai language. In Sect. 2 the
distance learning and distance assessment processes as they
are seen in this research are described in more detail. The
DOLE framework is presented in Sect. 3 together with some
remarks on implementation details. In the final section we
draw conclusions of this research and outline further work.

70Polibits (38) 2008

C. Snae, M. Brueckner, and E. Hirata

II. DISTANCE LEARNING AND ASSESSMENT
While distance learning primarily refers to remote

computer-enhanced education it is currently extending to
emerging technologies, such as mobile computing (M-
learning) and Personal Digital Assistants (PDAs). Distance
learning may include the use of web-based technologies,
including blogs, polls (electronic voting systems), simulations,
games, and wikis. The differentiation to blended learning is
floating.

E-learning systems are mostly used together with face-to-
face learning, but they may be applied to distance learning
after some adaptation. For a differentiation between face-to-
face and E-learning, see Fig. 1, which shows the portion of e-
learning in each of the teaching-learning models [11].

Distance learning has proven to be useful in tertiary
education, e.g. universities, and in environments which need
their learners to be lifelong learners. Contents of distance E-
learning range from technical and medical knowledge to soft
skills, such as social behavior. Even the instruction of hands-
on practical work can be assisted by distance learning units.

Distance E-learning has to serve very different learner
groups. There are novice learners, intermediate and advanced
up to experienced students. Furthermore distance E-learning
courses can be attended by dependent or independent learners
who study full-time or part-time. Distance E-learning is based
on prerequisites, such as management, culture, and IT [12].
Distance E-learning can be presented in many forms (see
Table I).

All of these forms can be enhanced by multimedia content,
which is designed to suit for various types of learners. Such
multimedia materials can consist of:

− e-books,
− e-libraries, where we can borrow books online and

check availability of books,
− streaming videos or audio files, where details and

information are kept in multimedia files or sound and
can be accessed via the Internet.

Fig 1. E-Learning rate in different learning environments.

TABLE I
FORMS OF DISTANCE E-LEARNING

Computer Based Training

(CBT)

students learn by executing special training

programs on a computer

Web Based Training (WBT) students learn by executing special training

programs on a computer via the Internet

Blended Learning provision or use of resources which combine

e-learning (electronic) or m-learning

(mobile) with other educational resources

Virtual Classroom, Lab Students study at home and use Voice over

IP and webcams in a virtual class, e.g.

performing experiments

Digital Learning Games Computer games with an educational

background

Distance E-learning can meet diverse user needs and

requirements and can be consumed just in time at home, on
travel or at the working place. It can be designed for the user's
context in small parts of the learning content. The content can
be made available to a large number of participants.
Participants can work out the material self-paced. So,
maximum information retention is more likely. As learners
study in their natural environments travel costs and associated
expenses are considerably reduced.

Application in distance learning is a developing area and
can often be seen in first language education and mostly
English as a foreign/second language (EFL/ESL) situation.
For instance, in the research into computer assisted language
learning (CALL), the effectiveness of teaching vocabulary has
been reported [13]. The importance of vocabulary knowledge
is prominent in understanding any language (e.g. Wilkins,
1972). In the EFL (English as a foreign language)
environment in particular, learning is generally more
challenging. This is because there is little mental lexicon
readily available to the learners at the early stage of learning.
For instance, when learners are learning objects (such as
fruits, vegetables) it is hard for learners to relate them with
their meaning and their existing knowledge if they had not
encountered them in their real life. Moreover, in teaching
young learners in general, motivation is one of the important
factors to consider since they tend to be less intrinsically
driven compared to adult learners.

The framework for the learning process is considered by
suggesting three steps: presentation, practice and performance.
Having the available systems which are targeted to learners,
however, they seem to lack the attention to the evaluation
stage. In the case of evaluating learners, it is often neglected
or the concept of ‘assessing’ learners being avoided for such
reasons as the result could discourage learners, in case of them
receiving negative results. However, it is important to
consider the way to evaluate and check the understanding of
the learners in any learning. It is necessary to have an
evaluation stage, after any teachings and techniques used, so
that it enables educators to monitor the learners’

71 Polibits (38) 2008

Distance Online Learning and Evaluation Framework

understanding as well as the effectiveness of the techniques
and approaches, which in the end, also serve as a follow-up
and feed into a revision phase. The points raised above (i.e.
the motivation and learning environment factors) should be
fed into the design of the interface for the assessment, which
will be discussed in the next section.

III. SYSTEM CONCEPT
Nowadays, user interfaces can be designed and

implemented with a wealth of technical opportunities, which
may lead to overshadow the important points. For distance
learners, the user interface must be playful and more attractive
than that for adult learners, without distracting the users from
the intended conversation [14], [15].

The learning design strategy has to take into account the
learners’ specific behavior and cultural background. In case of
Thai students, for instance, there is a great demand of
multimedia content, which has to add some fun to the learning
materials. From our teaching experience Thai students tend to
be social learners studying in groups and comprehend through
visual stimuli as well as examples and case studies.

Numerous qualitative and quantitative studies are available
that analyze the usefulness of applying computer games for
instruction purposes. They are mainly driven by the question
as to how acquire and improve the necessary skills that people
will face in the 21st century: managing information, being
adaptive to changing roles and environments.

Recent interest in games and learning stems from some
complex debates about the very role and practices of
education in a new century, rather than just from a simple
belief that young people find games motivating and fun and,
therefore, that they should be exploited in educational
contexts. These debates suggest, among other things, that
computer games are designed ‘to be learned’ and therefore
provide models of good learning practices, and that by playing
games young people are developing practical competencies
and learning skills.

Interesting application areas for computer games are the
development of strategic and logical thinking as well as
language. That means, students are expected to develop their
hard skills as well as their soft skills. Even the assessment of
students can be made within the gaming environment as long
as the boundary conditions are the same for every participant
Prensky [16] suggests that today’s learners have changed, and
that video (and computer) game players are developing skills
and competencies that others are not learning, such as decision
making, data handling, multi-tasking, and information
processing.

Characteristics of good instructional computer games
include challenge and adaptability, a more practice-based
rather than a didactic approach with authentic tasks, letting the
students experience consequences of interactions and choices
they make. Games situate players in particular literacy
practices associated with the identities being played,
immersing them in peculiar vocabularies and social customs;

often these literacy practices are associated with real-world
professional domains, or are consistent within the fantasy.
Games prepare players to deal with complex electronic
environments, to negotiate and handle data in multiple formats
simultaneously, to interact with images, sounds and actions,
and to interact with others through electronic channels [17].

DOLE is a system concept, which can be implemented as a
web based online game where users log onto the website and
play/learn against an artificial intelligence (A.I.) engine. For
example, players think of an animal, vegetable, mineral, or
other object and DOLE has to guess which term (word) the
player is thinking and vice versa. The resulting system can be
used anywhere and anytime. It is fun harnessing with
edutainment and game learning style. It can practice the way
of learner thinking and can assess skills, knowledge, and
thinking of learners. Some advantages of DOLE are described
as follows:

DOLE is adaptable (learns and adapts).
− It allows users to customize the game interface.
− It works as a stand-alone application.
− It can be provided via a Web Interface.

DOLE is scalable; the knowledge base can be tailored to
fit various game platforms.

− It can be adapted for mobile applications.
− It handles multiple Web servers.
− It is designed to host thousands of simultaneous

users.
The software development of the user interface can be

carried out using rapid prototyping (for an overview of the
various rapid prototyping paradigms for the implementation of
user interfaces see [18]).

The system is separated into 2 parts of object learning: 1)
the user thinks of an object and the system poses questions,
which the user has to answer correctly; 2) the system chooses
an object and lets the user ask questions about it, which the
system will answer correctly. Framework 1 is described in the
following.

A. Framework 1
The first framework is designed using Artificial Intelligence

and an inference engine with rule base forward and backward
chaining. This framework can work as follows (Fig. 2):

− Manage knowledge about things/objects, e.g.
fruit, animals.

− Provide yes/no questions for learners.
− Search and ask reasonable questions and lead

them to the right direction.
− Display questions that learners have been

answered already in the session.
− Guess the answer of a thing/object that the

learner is thinking of Suggest answers for each
question if learners are in need.

− Assess learners’ style of learning, e.g.
recognition, understanding, analysis.

− Give marks to student after assessment.
− Add/Edit/Delete data of objects, pictures,

multimedia and knowledge related to material of
learning.

72Polibits (38) 2008

C. Snae, M. Brueckner, and E. Hirata

Fig. 2. DOLE framework 1.

To implement this framework the following methodologies
can be used:

− Clustering technique is used to group objects or
things that have similar or the same
characteristics, e.g. shape, taste, smell or color.

− Inference engine tools: forward chaining (data
driven) is used for finding the answer of a thing
or object that the user is thinking of while using
the system. The tool considers/examines all
information and data from the answers provided
by learners, e.g., after learners choose
things/objects that they want to learn and revise
such as fruit then the system asks learners about
shape, taste, smell, etc. of fruit. The learners
have to provide correct answers as yes or no, so
that the system can get back with other questions
to follow by previous learner answers and can
try to guess the answer.

− Backward chaining is used to recheck and trace
the answers to the questions, e.g. the answer is
elephant (animal section) then the system
recheck all questions and answers that learners
provide such as answering yes for 4 legs, big
size, has trunk and tusk etc. From this, the
learners can get full marks if they provide all
correct answers to questions that system has
generated and less mark if they answered
incorrectly. There will be no more than 20
questions in each assessment.

B. Framework 2
The second framework is developed using specific name

matching algorithms for matching words. This framework can
work as follows (Fig. 3). Firstly, a learning and assessment
domain is specified by the system, from which the objects are
chosen randomly, for example fruit, vegetables, or animals.
The system now allocates the properties of this object and
prepares for the answering task. After that, the learner poses
the questions to the system to find out the correct object. With
each question the assessment part of the system evaluates the

value of the question for the overall investigation process.
This evaluation is based on the time used for posing questions,
the number of questions until the correct answer, and so on.
Should the learner misspell or mistype a keyword, the system
can try to find related words with the help of the allocated
properties of the object mentioned above and a word matching
algorithm that compares them and their synonyms with the
misspelled word. Having found the most similar match the
system will reply with a question to confirm the match and
provide further yes/no answers.

The user interface can display all interactions (questions
and answers by both partners) at any time the learner wants
them to review to find the correct answer, i.e. the object that
the system is thinking of. From the questioning process and its
development of finding the solution the assessment part of the
system can mark the learner’s comprehension, skill and
knowledge. If the learners need only a few questions to find
the correct solution, they get higher marks.

Parts of the concept of DOLE framework 2 are clustering
and word matching techniques as outlined in the following.

Clustering is a technique used to classify similar objects
into collections using criteria based on similarity, e.g. similar
characteristics or similar properties. A partitioning approach
can be taken to manage grouping, which results in a division
of the object set into groups (classes, clusters) well separated
in the feature space. The groups can be regarded as relatively
"homogeneous" and labeled with properties (characteristics),
so that they can be investigated separately. In DOLE, for
example, the clustering technique will be used to group fruits
that have similar or the same characteristics, e.g. shape, taste,
smell or color. In DOLE (1) properties/characteristics (e.g.,
kind, shape, color, taste, smell, etc) are sorted and then related
by classification; clustering stores any types of objects and
some related properties and characteristics, (2) it helps the
users to pose useful questions that the system has to answer,
(3) it supplies fast access to required information.

Fig. 3. DOLE framework 2.

73 Polibits (38) 2008

Distance Online Learning and Evaluation Framework

Word matching is used to match keywords of object
characteristics in the knowledge base with words from
learner’s questions. Word matching can deal with wrong
spellings/typing from learners as well as with relating
terms/keywords to respond to those spellings correctly.
Example: the learner types “grene”, the system is not able to
find a correct instance of this keyword and will find the
nearest match with the help specific name matching
algorithms as described in [19], [20], [21].

IV. CONCLUSIONS AND FURTHER WORK
This research has led to a concept for a Distance Object

Learning and Evaluation (DOLE) system, which comprises an
appropriate user interface, a domain specific ontology, and a
neural network for intelligent questioning and answering. A
decision tree will be used to automatically arrange and provide
the questions and answers.

The framework has its strengths in case of summative
assessments, which are related to the learning of concepts
shared as common knowledge in the native or in a foreign
language. The system can be used as a tool for guided
learning, assessment and self-assessment as well.

A more advanced way to enhance DOLE is to incorporate a
part for the automatic interpretation of facial expressions
during the assessment process. This would add to and give a
richer picture of the assessment results.

Another area of further work is the recommendation of
further studies and the outline of an individual study plan for
the student that has been assessed and incorporating the
assessment session into an e-portfolio of learning, which is an
“electronically-based portfolio, i.e. a file store and information
management system which is modeled on the working method
used for paper portfolios, but which takes advantage of the
capabilities of ICT, notably allowing earners to store digital
artifacts and streamlining the process of review and
moderation for learners, tutors, moderators and verifiers” [22].

REFERENCES
[1] W. Huitt. A transactional model of the teaching/learning process.

Educational Psychology Interactive”, Valdosta, GA: Valdosta State
University, 2003. Available from
http://chiron.valdosta.edu/whuitt/materials/tchlrnmd.html.

[2] D. Brethower, K. S. Pfeiffer. Performance-Based Instruction, includes a
Microsoft Word diskette: Linking Training to Business Results. 1998.

[3] J. Johnson, R. Fiene, J. Keat, H. Darling, D. Pratt, J. Iutcovich.
Mastering course content and learner satisfaction in early childhood
education: A comparison of regular classroom instruction with three
variations of internet delivery. Journal of Early Childhood Teacher
Education, vol 22, no 4, pp 267 – 274, 2001.

[4] M. Scriven. The Methodology of Evaluation. In: R. Tyler, R. Gagne, &
M. Scriven, Perspectives of Curriculum Evaluation, Chicago: Rand
McNally, pp.39-83, 1967.

[5] M. Q. Patton. Paradigms and Pragmatism. In: D. M. Fetterman (ed),
Qualitative Approaches to Evaluation in Education: The Silent Scientific
Revolution, New York: Praeger, 1998.

[6] User-Friendly Handbook for Mixed Method Evaluations. Edited by Joy
Frechtling, Laure Sharp, Westat August 1997. Available at
http://www.ehr.nsf.gov/EHR/REC/pubs/NSF97-153/START.HTM

[7] A. Koohang and K. Harman. Learning Objects and Instructional Design.
Informing Science, 2007.

[8] D. R. Rehak, R. Mason. Keeping the learning in learning objects, in
Littlejohn. Reusing online resources: a sustainable approach to e-
Learning, Kogan Page, London, pp.22-30, 2003.

[9] B. Caudill and D. Banks. Instructional Designer's Pocket Guide to
SCORM (Paperback). JCA Solutions, First Edition edition (August 1,
2006).

[10] Learning Technology Standards Committee: IEEE Standard for Learning
Object Metadata. IEEE Standard 1484.12.1, Institute of Electrical and
Electronics Engineers, New York, 2002. (draft), available online
http://ltsc.ieee.org/wg12/files/LOM_1484_12_1_v1_Final_Draft.pdf

[11] C. Snae and M. Brueckner. Web Based E-Learning Framework for Thai
Learning Environment. In: Proceedings of International Conference e-
Learning 2006: Learning Theories vs Technologies, Bangkok, 14-16
December, 2006.

[12] C. Snae and M. Brueckner. Ontology-Driven E-Learning System Based
on Roles and Activities for Thai Learning Environment.
Interdisciplinary Journal of Knowledge and Learning, Vol. 3, pp 1-17,
2007.

[13] R. P. Donaldson and M. A. Haggstrom. Changing Language Education
Through Call (Routledge Studies in Computer Assisted Language
Learning). Routledge, 2006.

[14] R. Aust and R. Isaacson. Designing and Evaluating User Interfaces for
eLearning.In: G. Richards (Ed.), Proceedings of World Conference on
E-Learning in Corporate, Government, Healthcare, and Higher
Education, Chesapeake, VA: AACE, pp 1195-1202, 2005. Available
online from:
http://elearndesign.org/papers/eLearn2005_Aust.pdf (viewed Nov. 10,

2007).
[15] S. Harri-Augstein and L. F. Thomas. Learning conversations. London:

Routledge, 1991.
[16] M. Prensky, Digital Game-based Learning, New York, 2001.
[17] C. Snae, M. Brueckner, and W. Wongthai. E-Assessment Framework for

Individual Learners. In: Proc. of International Conference on E-
Learning: Strategies and Edutainment, Bangkok, Thailand, 7-11 March,
2008.

[18] F. Hardtke. Rapid Prototyping for User-Friendly and Useful Human
Machine Interfaces. In: Proceedings of SIMTECT 2001, Simulation
Industry Association of Australia, Canberra, Australia. Available online
http://www.siaa.asn.au/get/2395363450.pdf (viewed Nov 3, 2007)

[19] C. Snae. A Comparison and Analysis of Name Matching Algorithms.
International Journal of Applied Science. Engineering and Technology,
Vol 4 no. 1, pp. 252-257, 2007.

[20] C. Snae, K. Namahoot and M. Brueckner. MetaSound: A New Phonetic
Based Name Matching Algorithm for Thai Naming System. In: Proc. of
International Conference on Engineering, Applied Science and
Technology (ICEAST 2007), 21-23 November, Bangkok, Thailand,
2007.

[21] C. Snae and M. Brueckner. A Semantic Web Integrated Searching
System for Local Organizations with Thai Soundex. In: 4th International
Joint Conference on Computer Science and Engineering (JCSSE 2007)
2-4 May, Khon Kean, 2007.

[22] JISC, E-assessment (Glossary), 2006. Available from:
http://www.jisc.ac.uk/uploaded_documents/eAssess-Glossary-

Extended-v1-01.pdf (access Nov. 3, 2007)

74Polibits (38) 2008

C. Snae, M. Brueckner, and E. Hirata

Resumen—Este trabajo muestra el diseño de un sistema básico
de control para servomotores convencionales, implementado en
una computadora de bolsillo. La particularidad de esta
realización radica en la interfaz hardware conformada por un
microcontrolador que conecta al respectivo servomotor con el
PDA a través del puerto serie de éste último. El sistema es de
propósito general y se puede adaptar sin cambios drásticos a
cualquier aplicación similar.

Palabras clave—Servomotores, computadoras de bolsillo,
robótica.

PDA COMPUTERS AS AN ALTERNATIVE
FOR SERVO MOTORS CONTROL IN ROBOTICS

Abstract—This paper presents a system that allows for control

of conventional servo motors using PDA computers. The
advantage of the proposed implementation is related to hardware
interface, namely, to the usage of the specialized microcontroller
that connects PDA with the servo motor using serial port of the
PDA. The system can be easily adapted to other similar
applications.

Index Terms—Servo motors, PDA computers, robotics.

I. INTRODUCCIÓN
onsiderando la creciente proliferación de la tecnología de
los dispositivos móviles, en específico la tendencia al uso

de teléfonos celulares y sobre todo las computadoras de bolsillo
o de mano, también conocidas como PDAs (en inglés, Personal
Digital Assistant, Asistente Digital Personal), es posible
afirmar que este tipo de dispositivos son elementos
indispensables en la informática contemporánea para el
intercambio y proceso de información. Entre muchas otras
aplicaciones, en este trabajo se propone su adecuación como
lazo primario de control en la supervisión de procesos.

Esta es la continuación de un proyecto que inició con la
adquisición de datos para utilizar el PDA como un monitor de
señales [1]; ahora, la intención es demostrar de manera sencilla
cómo se pueden enviar datos hacia un microcontrolador y que
éste pueda controlar la posición del rotor de dos servomotores

Manuscrito recibido el 20 de agosto del 2008. Manuscrito aceptado para su

publicación el 3 de noviembre del 2008.
J. C. Herrera Lozada, I. Rivera Zárate, M. Olguín Carbajal, CIDETEC-IPN,

México D. F (e-mail:irivera@ipn.mx).

independientes entre sí, demostrando una alternativa
sustentable dirigida hacia el área de la robótica supervisada.

Fig. 1. Prototipo general de adquisición y monitoreo.

En un caso formal de diseño, será importante el análisis

detallado de los parámetros y las condiciones del proceso a
controlar con la intención de optimizar el sistema como lo
demanda la teoría del control [2], [3], [4].

A. Servomotor
Los servos son una derivación de los motores a CD, estos se

caracterizan por su capacidad para posicionarse de forma
inmediata y exacta dentro de su intervalo de movimiento al
estar operando. Para lo anterior, el servomotor espera un tren de
pulsos; cada uno de estos pulsos tiene una duración específica
para mover el eje de rendimiento del servomotor hacia una
posición angular determinada. Se dice que el tren de pulsos es
una señal codificada; por lo que cuando ésta cambia en el ancho
de sus pulsos, la posición angular del eje también cambia.

Para comprender mejor el funcionamiento de estos
dispositivos electromecánicos, obsérvese la Fig. 2, en donde se
aprecian las señales que permiten el movimiento de un
servomotor estándar.

Fig. 2. Movimiento de un servomotor estándar.

J. C. Herrera Lozada, I. Rivera Zárate y M. Olguín Carbajal

Computadoras de Bolsillo
como una Alternativa para el Control

de Servomotores en Robótica

C

75 Polibits (38) 2008

B. Computadora de Bolsillo (PDA)
En la particularidad de esta realización se utilizó una

computadora de mano iPAQ Pocket PC de Compaq, modelo
3950, con sistema operativo Windows Pocket 2002 precargado
de fábrica. Este sistema operativo es una versión más de la
plataforma Windows CE (Compact Edition) La Tabla I muestra
otras prestaciones importantes del equipo.

TABLA I.

CARACTERÍSTICAS DE LA POCKET PC 3950

Procesador

@Velocidad

Conectividad

integrada

SDRAM

@FLASH
ROM

Resolución

pantalla táctil

Intel PXA250

@400MHz
USB, Serial, IrDA

64MB

@32MB

240 x 320 pixeles,
Transflective TFT,

65000 colores

En dependencia a la plataforma hardware del PDA

(características del procesador y de la memoria) y a su sistema
operativo, se eligió Embedded Visual Tools 3.0 como ambiente
de desarrollo. Éste contiene Microsoft Embedded Visual C++
3.0 y Microsoft Embedded Visual Basic 3.0, con los kits de
desarrollo (SDKs) para Pocket PC 2002 y Smartphone 2002.

Es importante mencionar que los PDAs más recientes, con
prestaciones más sofisticadas incorporadas como por ejemplo
las conectividades Bluetooth y Wi – Fi, se programan entre
otras herramientas, con Visual Basic.NET si fuera el caso del
sistema operativo Windos Mobile en sus versiones 5.0 y 6.0, o
en otro caso, para una independencia del sistema operativo es
posible acceder a la programación con j2me [6].

En el prototipo planteado, el grueso del procesamiento lo
realiza el microcontrolador por lo que también es posible
considerar el uso de alguna hyperterminal que permita el
acceso a los puertos del PDA, para evitar el programar una
interfaz de usuario, aunque este aspecto realmente depende de
la complejidad de la aplicación misma.

II. DESARROLLO DE LA APLICACIÓN
La interfaz que permite la conexión con el PDA consta de

dos módulos principales: un microcontrolador y un programa
residente escrito en Embedded Visual Basic que controla el
puerto serie del PDA para interactuar con el microcontrolador
[1], este programa residente es el que podría ser sustituido por
la hyperterminal, si fuera el caso.

Para la comunicación serial se requirió construir un cable
Null – Modem de sólo 3 hilos, interconectando las señales
sobrantes en el mismo conector DB9, tal y como se aprecia en
la Fig. 3.

Este procedimiento emula el protocolo CTS/RTS y
DSR/DTR por hardware; para controlar el flujo de datos se
recurre al protocolo software XON/XOFF.

Todo el proceso se resume en sincronizar RXD en el PDA
con la señal TXD a la salida del microcontrolador; a la vez,
TXD del PDA con RXD del microcontrolador.

Fig. 3. Cable Null-Modem de 3 hilos.

El prototipo construido incluye un conector DB9 que se une

con su contraparte de la cuna de sincronización (cradle) del
PDA. Obsérvese en la Fig. 4, que en la tablilla que contiene al
microcontrolador, las conexiones hacia el DB9 se controlan a
través de jumpers con la finalidad de concebir otras
configuraciones sin realizar cambios significativos en el
circuito.

Fig. 4. Prototipo con PIC16F628.

Originalmente, este prototipo se diseñó para soportar un

PIC16F73 que contiene internamente 4 canales de conversión
A/D en correspondencia a las necesidades del proyecto
anteriormente referido [1]; en el caso del PIC16F628 se
desconectó el oscilador externo a través de los mismos jumpers
dado que este dispositivo incorpora un oscilador interno. El
prototipo resulta compatible para ambos microcontroladores.

El microcontrolador PIC16F628 de Microchip es un
dispositivo CMOS FLASH de 8 bits con arquitectura RISC,
capaz de operar con frecuencias de reloj hasta de 20 MHz.
Posee internamente un oscilador de 4 MHz y un circuito
Power-On Reset. Ofrece dos puertos de datos con un total de 16
líneas I/O de propósito general.

Adicionalmente, el PIC16F628 proporciona una memoria de
datos EEPROM de 128x8, una memoria de programa FLASH
de 2024x14, una memoria de datos RAM de propósito general
de 224x8, un módulo de captura/comparación/PWM, un
USART, 2 comparadores análogos, una referencia de voltaje
programable y tres temporizadores. Se recomienda revisar la
hoja de especificaciones de este circuito integrado para
complementar la información.

III. INTERFAZ DE USUARIO
Como se mencionó con anterioridad las interfaces para

acceso al puerto serie de la iPAQ 3950 se programaron en
Embedded Visual Basic. Se utilizó el control MSCOMM
(control tipo Active X) con la opción a disparo, es decir, al
depositar tanto para recibir como para enviar datos.

76Polibits (38) 2008

J. C. Herrera Lozada, I. Rivera Zárate y M. Olguín Carbajal

En el caso de recibir datos provenientes del
microcontrolador, un byte en el buffer del puerto
automáticamente dispara el evento correspondiente.

MSCOMM incorpora todas las funciones para configurar el
puerto; sus propiedades más importantes son las siguientes:

ComPort: Activa y regresa el número del puerto serial
(Comm1, Comm2).

PortOpen: Activa y regresa el acceso al puerto.
Input: Regresa los caracteres del buffer receptor.
Output: Escribe una cadena sobre el buffer Transmisor.
Settings: Activa y regresa la razón de Baudios, paridad,

número de bits, bits de paro. En el caso particular de este
trabajo se configuró la cadena 2400, n, 8, 1, con Handshaking
puesto a cero, debido a que no se realiza ningún control sobre el
flujo de información.

Dentro del programa escrito para este proyecto, se hace
referencia al control MSCOMM a través del objeto declarado
como Comm1. Una aproximación al procedimiento inicial del
programa se lista a continuación.
Private Sub Adquirir_Click()
 Comm1.PortOpen = True
 Comm1.RThreshold = 1
 Comm1.SThreshold = 0
 Comm1.InputLen = 0
 Comm1.DTREnable = False
End Sub

El objeto Comm1 responde al evento OnComm, el cual
genera una interrupción, indicando cuando hay comunicación o
si algún error ha ocurrido en la transferencia de la información.

Una vez abierto el puerto, se procede a interactuar con el
microcontrolador enviando y recibiendo palabras de datos. Las
instrucciones básicas se listan a continuación, sólo de manera
indicativa.

Comm1.Output = DatoEnviar.Text & vbCr
ValorLeido = Comm1.Input

La Fig. 5 muestra la interfaz para los servomotores, tanto en
tiempo de diseño como en tiempo de ejecución. En esta
aplicación se utiliza un monitor de mensajes y una caja de texto
para validar una acción. Así mismo, es posible seleccionar el
servomotor a operar.

Fig. 5. Interfaz para los servomotores
 en tiempo de diseño y en ejecución

Se puede apreciar en ambos casos que es posible abrir y
cerrar el puerto en cualquier momento para controlar la
comunicación con el microcontrolador.

IV. SERVOMOTORES Y PROGRAMACIÓN DEL
MICROCONTROLADOR

Los servomotores utilizados son de la marca Futaba modelo
s3003 (Fig. 6), con un rango de movimiento de 0º a 180º. Para
posicionar el eje de este servomotor se requieren trenes de
pulsos con anchos de 0.3 ms. y hasta 2.3 ms. para conseguir el
máximo ángulo.

Fig. 6. Servomotor Futaba s3003.

El microcontrolador se encarga de recibir serialmente el dato

proveniente del PDA en formato estándar binario (también
podría enviarse en formato ASCII) con una velocidad
predeterminada de 2400 baudios, sin paridad y con un bit de
paro. A través de una palabra codificada es posible controlar las
condiciones del servomotor, antes mencionadas.

El programa fuente escrito en lenguaje de alto nivel
PicBasic, se lista parcialmente a continuación [7]. En éste,
entiéndase serin como la instrucción que permite al
microcontrolador recibir datos provenientes del puerto serie del
PDA y serout como la contraparte que permite enviar datos del
microcontrolador hacia el PDA. Para simplificar el código sólo
se atañe un servomotor; el código se hace extensivo en el caso
de los dos motores indicados en el diagrama de la Fig. 7. En
este mismo diagrama, el monitor serial se sustituye por el
puerto serie del PDA en cuestión. Las líneas 0 y 1 del puerto B
se utilizan para controlar los servomotores.

aux = 230 'Con 1 Ms, extrema izq.
servo1: pause 500
PORTB.1 = 0
letra:
pause 1000
serout PORTA.2, N2400, ["Introduce Posición",13,10]
serout PORTA.2, N2400, ["1)-90º 2)-45º 3)0º 4)+45º

 5)+90º",13,10]
serin PORTA.0, N2400, tiempo
if (tiempo < $31 OR tiempo > $35) then
serout PORTA.2, N2400, ["Sólo valores entre 1 y 5",13,10]
pause 250
goto letra
else
call deco
aux = dato
pause 250
endif
envia: if dato = 231 then goto regre
dato=dato + 1
pulsout PORTB.1, dato
pause 20
goto envia
regre: if dato = aux then goto letra

77 Polibits (38) 2008

Computadoras de Bolsillo como una Alternativa para el Control de Servomotores en Robótica

dato = dato - 1
pulsout PORTB.1, dato
pause 20
goto regre

deco:
select case tiempo
Case "1": dato=30 '30 x 10 uS, futaba s3003, 0.3 ms a 2.3 ms;
considerando Osc de 4MHz
CASE "2": dato=80
CASE "3": dato=130
CASE "4": dato=180
CASE "5": dato=230
end select

Fig. 7. Diagrama de conexiones.

V. PRUEBAS Y RESULTADOS
El microcontrolador con las rutinas seriales se utilizó

primeramente con una PC de escritorio para verificar el
funcionamiento correcto de la electrónica de la interfaz para los
motores; posteriormente se comprobó el funcionamiento en el
PDA ejecutando la aplicación generada en Embedded Visual
Basic para Windows Pocket 2002. El sistema de control básico
funcionó correctamente para el caso de un solo servomotor y
para la situación extendida hacia dos servomotores.

En la Fig. 8 es posible apreciar al PDA empotrado en su
cuna de sincronización y el prototipo en operación. El
desarrollo final infiere un PIC16F628.

Fig. 8. Prototipo en operación con cuna de sincronización

 y PIC16F73 (sólo para comprobar compatibilidad).

También se realizaron pruebas con un PDA modelo HP iPAQ
hx2490b, con sistema operativo Windows Mobile 5.0. En este
caso, no se programó una interfaz de usuario, sino que se
recurrió al uso de una hyperterminal. En la Fig. 9, se aprecia la

hyperterminal en funcionamiento, así como la evolución del
prototipo hacia un diseño más robusto con el PIC16F628.

Fig. 9. iPAQ hx2490b con Windows Mobile 5.0

y prototipo modificado (PIC16F628).

Se montó un pequeño laboratorio de pruebas, tal y como se
puede apreciar en la Fig. 10, en el cual se utilizó un
osciloscopio para medir los anchos de los pulsos generados por
el PIC y que posicionan los ejes de los servomotores.

Fig. 10. Aspecto general del laboratorio

de pruebas para el prototipo.

VI. CONCLUSIONES
Como se menciona a lo largo de este trabajo, para algunas

aplicaciones que no infieren alta complejidad de
procesamiento, el PDA es un recurso sustentable para
implementar sistemas simples de control, asumiendo que quien
realiza el grueso del procesamiento es el microcontrolador, y la
computadora de bolsillo se limita a la supervisón y monitoreo
de resultados. En el CIDETEC, estas primeras aproximaciones
se han aplicado con éxito en el control de aplicaciones
robóticas con pocos grados de libertad, en donde cada grado
está constituido propiamente por un servomotor.

La transmisión serial es sumamente confiable y sencilla de
implementar; además de que actualmente se ha migrado hacia
la comunicación inalámbrica utilizando el principio de la
transmisión serial convencional, como sucede con el puerto
Bluetooth, lo que aumenta los alcances futuros del prototipo

Uno de los principales objetivos planteados al inicio de este
proyecto, fue el de utilizar el puerto serie de la iPAQ Pocket PC
para recibir datos de un hardware externo. En el caso del
sistema diseñado, el microcontrolador utilizado redujo
drásticamente la complejidad de la comunicación entre el PDA
y los servomotores; éste se conecta directamente a la iPAQ sin
necesidad de un acoplador de nivel de voltaje (por ejemplo, el
C.I. MAX232). De manera confiable se puede generar el

78Polibits (38) 2008

J. C. Herrera Lozada, I. Rivera Zárate y M. Olguín Carbajal

comando para habilitar el tren de pulsos que posiciona con
exactitud el rotor de los motores.

REFERENCIAS
[1] J. C. Herrera Lozada, I. Rivera Zárate, A. Cruz Contreras. Monitor de

Señales en un PDA. En: Proceeding XXVII International Congress of
Electronic Engineering ELECTRO 2005. División de Estudios de
Posgrado, ITCH, pp. 267 – 271.

[2] M. Mazo, J. Ureña, F. J. Rodríguez, J. J. García, F. Espinosa, J. L. Lázaro,
J.C. García. Teaching Equipment for Training in the control of DC,
Brushless and Stepper Servomotors. IEEE Trans. On Education, vol. 41,
nº2, 1998, pp 146-158.

[3] P. Cominos, N. Munro. PID controllers: recent tuning methods and design
to specification. In: IEEE Proceedings: Control Theory and Applications,
vol. 149, no. 1, 2002, pp. 46–53.

[4] S. N. Vukosavic, M. R. Stojic. Suppression of torsional oscillations in a
high-performance speed servo drive. IEEE Transactions on Industrial
Electronics, vol. 45, no. 1, 1998, pp. 108 – 117.

[5] Nilas, P.; Sueset, T.; Muguruma, K. A PDA-based high-level
human-robot interaction. In: Robotics, Automation and Mechatronics,
2004 IEEE Conference on Volume 2, 1-3 Dec. 2004, pp1158 – 1163.

[6] J. C. Herrera Lozada, J. C. González Robles, A. Cruz Contreras.
Programación de Dispositivos de Cómputo Móviles. POLIBITS, Año
XV, Vol. 1, Número 31, Enero – Junio de 2005. CIDETEC, México.

[7] J. Iovine. PIC Microcontroller Project Book. Mc. Graw Hill, 2004, 272 p.

79 Polibits (38) 2008

Computadoras de Bolsillo como una Alternativa para el Control de Servomotores en Robótica

80Polibits (38) 2008

Resumen—Una Unidad de Punto Flotante (Floating Point Unit
en inglés) o, más comúnmente conocido como coprocesador
matemático, es un componente de la CPU especializado en las
operaciones de punto flotante. Las operaciones básicas que toda
FPU puede realizar son las aritméticas (suma y multiplicación), si
bien algunos sistemas más complejos son capaces también de
realizar cálculos trigonométricos o exponenciales. No todas las
CPUs tienen una FPU dedicada. En ausencia de FPU, la CPU
puede utilizar programas en microcódigo para emular una
función en punto flotante a través de la unidad aritmético-lógica
(ALU), la cual reduce el costo del hardware a cambio de una
sensible pérdida de velocidad. El objetivo de este articulo, es
mostrar como puede ser implementado un coprocesador
matemático utilizando VHDL, para su implementación en
cualquier FPGA.

Palabras Clave—FPU, coprocesador matemático, VHDL,
FPGA.

DESIGN OF MATHEMATICAL COPROCESSOR
OF SIMPLE PRECISION USING SPARTAN 3E

Abstract—Floating Point Unit (FPU) is also known as

mathematical coprocessor and is a specialized component of the
CPU dedicated to floating point operations. Basic operations of
any FPU are arithmetic (sum and multiplication), though some
more complex systems are also able to perform trigonometric or
exponential calculations. Not all CPUs have an additional FPU. If
there is no FPU present, then CPU can use some programs
written in microcode for emulation of floating point operations
using arithmetic-logical unit (ALU). This reduces the cost of the
hardware but slow down the processing speed. The purpose of
this paper is to propose an implementation of the mathematical
coprocessor using VHDL, for its further implementation in
FPGA.

Index Terms—FPU, mathematical coprocessor, VHDL, FPGA.

I. INTRODUCCIÓN
a primera computadora personal comercial, fue
inventada por IBM en 1981. En su interior había un
microprocesador de número 8088, de una empresa

llamada Intel. Las características de velocidad de este
dispositivo resultan risibles hoy en día: un chip de 8 bits
trabajando a 4,77 MHz, aunque bastante razonables para una

Manuscrito recibido el 10 de mayo del 2008. Manuscrito aceptado para su
publicación el 2 de septiembre del 2008.

J. A Alvarez Cedillo, Centro de Innovación y Desarrollo Tecnológico en
Cómputo del Instituto Politécnico Nacional, México, D. F. (teléfono:
57296000 Ext. 52536; e-mail: jaalvarez@ipn.mx).

Michael Lindig B, Dirección de Cómputo y Telecomunicaciones del
Instituto Politécnico Nacional, México, D. F. (e-mail: mlindig@ipn.mx).

época en la que el chip de moda era el Z80 de Zilog, como
microprocesador común en los sistemas Spectrum que fueron
muy populares gracias sobre todo a los juegos increíbles que
podían ejecutarse con más gracia y arte que muchos juegos
actuales para Pentium.

El 8088 fue una versión de capacidades reducidas del 8086,
el cual creo la serie 86 que se integro para los siguientes chips
Intel: el 80186 (Control de periféricos), el 80286 (16 bits y
hasta 20 MHz) y por fin, en 1987, el primer microprocesador
de 32 bits, el 80386, llamado simplemente 386.

Al ser de 32 bits permitía idear software más moderno, con
funcionalidades como multitarea real, es decir, disponer de
más de un programa trabajando a la vez. A partir de entonces
todos los chips compatibles Intel han sido de 32 bits, incluso
el flamante Pentium II.

Un día llegó el microprocesador 80486 [1] , que era un
microprocesador 80386 con un coprocesador matemático
incorporado y una memoria caché integrada, lo que le hacía
más rápido; desde entonces todos los chips tienen ambos en su
interior, en la Fig. 1 se observa una computadora 486.

Fig. 1. Muestra una Microprocesador Amd

modelo 486 (Un módelo 386 con Coprocesador Matemático (FPU)

II. EL COPROCESADOR MATEMÁTICO
El coprocesador matemático es un componente electrónico,

que esta diseñado para que funcione en paralelo con el
microprocesador. El conjunto de instrucciones incluye muchas
operaciones extremadamente potentes para la operación de los
datos en punto flotante.

El coprocesador trabaja internamente sólo en formato real,
por lo que cualquier carga en los registros de coprocesador
provocará que dicho valor sea convertido a punto flotante.

Sus registros están estructurados en forma de pila y se
accede a ellos por el número de entrada que ocupan en la pila.

Los registros van desde R(0) hasta R(7), en total ocho
registros de 80bits, como deben de manejarse en formato de
pila, el coprocesador tiene un puntero de control de pila

Diseño de un Coprocesador Matemático
de Precisión Simple usando el Spartan 3E

J. Antonio Álvarez y Michael Lindig B.

L

81 Polibits (38) 2008

llamado St (state,estado), Toda interacción que tengamos que
hacer con los registros del coprocesador se realiza a través del
puntero de pila St, donde el último valor introducido es St o
St(0) y si hubiéramos rellenado todos los registros el ultimo
seria St(7)

Tipos de datos

El coprocesador puede obtener y escribir datos en memoria
de los siguientes tipos.

− Entero
o Words(16bits)
o Dword(32 bits)
o Qwords(64 bits)

− Real
o Words(16 bits)
o Dword(32 bits)
o Qwords(64 bits)
o Twords(80 bits)

Cada elemento de la pila puede almacenar un valor en
formato real temporal de 10 bytes (80bits).

El puntero de la pila (ST) indica en todo momento el
elemento en la cima. Puede valer entre 0 y 7.

Las instrucciones del 8087 pueden trabajar con datos en
memoria, en el siguiente ejemplo se muestra código en
ensamblador que explota esta capacidad:

finit
fild multiplicando
fild multiplicador
fmul st,st(1)
fist resultado

Las instrucciones del 8087 también pueden trabajar

directamente con datos en la pila, en el siguiente ejemplo se
muestra código en ensamblador que explota esta capacidad:

finit
fild multiplicando
fimul multiplicador
fist resultado

Todas las instrucciones del 8087 comienzan con la letra “F”.

Si acaban con la letra “P” quiere decir que la pila se cargará
con el resultado. Por ejemplo, FISTP VAR saca el resultado
de la cima de la pila, lo guarda en la variable en memoria y lo
quita de la pila (mueve el puntero).

Tipos de instrucciones:
Existen diferentes tipos de instrucciones, estas se encuentran

clasificadas de acuerdo a una función primaria, estas funciones
son las siguientes:

− • De transferencia de datos
− • Aritméticas
− • De comparación
− • De cálculo de funciones transcendentes
− • Relativas a constantes
− • De control

Para utilizar el 8087, el 8086 debe ejecutar la instrucción de
inicialización FINIT.

El siguiente ejemplo en ensamblador, multiplica dos
variables donde el cálculo de resultado es igual a la var1 *
var2.

pila segment stack 'stack'
dw 100h dup (?)
pila ends
datos segment 'data'
var1 dw 7
var2 dw 3
resultado dw 0
datos ends
codigo segment 'code'
assume cs:codigo, ds:datos, ss:pila
main PROC
mov ax,datos
mov ds,ax
finit
fild var1
fimul var2
fist resultado
mov ax,resultado
call escribir_numero
mov ax,4C00h
int 21h
main ENDP
escribir_numero PROC NEAR
push ax
push dx
mov bx,10
mov dl,al
cmp ax,bx
jb escribir_resto
sub dx,dx
div bx
call escribir_numero
escribir_resto:
add dl,'0'
mov ah,2
int 21h
pop dx
pop ax
ret
escribir_numero ENDP
codigo ends
END main

III. IMPLEMENTACIÓN EN VHDL
VHDL es el acrónimo que representa la combinación de los

conceptos VHSIC y HDL, donde VHSIC es el acrónimo de
Very High Speed Integrated Circuit y HDL es a su vez el
acrónimo de Hardware Description Language [2].

Es un lenguaje estándar definido por la IEEE (Institute of
Electrical and Electronics Engineers), ANSI/IEEE 1076-1993
que se usa para diseñar circuitos digitales. Otros métodos para
diseñar circuitos son la captura de esquemas con herramientas
CAD y los diagramas de bloques, pero éstos no son prácticos

82Polibits (38) 2008

J. Antonio Álvarez y Michael Lindig B.

en diseños complejos. Otros lenguajes para el mismo
propósito son Verilog y ABEL. Se usa principalmente para
programar PLD (Programable Logic Device - Dispositivo
Lógico Programable) y FPG] (Field Programmable Gate
Array) [3]. En la Fig. 2 se muestra un kit de desarrollo Spartan
3).

El objetivo de este proyecto es diseñar una FPU de
precisión simple usando VHDL, simularlo y sintetizarlo.
Contara con las operaciones adición de punto sólo flotante, la
substracción y la multiplicación. [4]

Fig. 2. Kit de desarrollo de Spartan 3.

Descripciones de Señal
Entradas:

clk reloj
opa y opb .- Entradas de los operandos A y B
rmode.- Redondeo (00 redondea al más cercano, 01
redondea a cero, 10 redondea a inf, 11 redondea a-inf)
fpu_op .- Operaciones de punto flotante

0 – Suma
1 – Resta
2 -Multiplicación
3 -División
4 -Int.- Convierte en entero,
5 - Flot.- Conversión a int.

Salidas:
fout - salida del resultado
inf.- Es el valor especial INF
ine -Calculo inexacto
overflow .- Salida de overflow, por ejemplo el número es
mas largo de lo que puede ser representado.
div_by_zero .- División sobre cero.
snan .- SNAN
qnan .- QNAN

La Fig. 3 muestra la entidad del proyecto a construir.

Fig. 3. Muestra una Microprocesador Amd modelo 486
(Un módelo 386 con Coprocesador Matemático (FPU)

Fig. 4. Muestra el núcleo del proyecto [5].

El núcleo de la FPU (Fig. 4) está formado por las siguientes

unidades.
Un bloque normalizado de suma y resta.- Calcula la

diferencia entre el exponente mas grande y el pequeño. Ajusta
la fracción pequeña por la derecha y determina si la operación
es una suma o una resta, después resuelve los bits del signo

Un bloque normalizado de multiplicación y división.-
Conmuta la suma o resta de exponentes, checa si existe un
exponente en overflow, o la condición de underflow y el valor
INF sobre una entrada.

Unidad de redondeo – Normaliza la fracción y el
exponente. Todos los redondeos los hace en paralelo y
selecciona la salida correspondiente.

Unidad de Excepciones – Genera y maneja las excepciones.
El diagrama de la Fig. 3 muestra el bloque general de

circuitos dentro de la integración del proyecto.
En la Fig. 5 se muestra el datapath y el pipeline:

Suma
/Resta

Multiplicación División

Unidad de
redondeo

Unidad de
excepciones

Bloque
norm.
suma/
resta

Bloque
norm
Mul/div

Resultado div snan quan inf line

83 Polibits (38) 2008

Diseño de un Coprocesador Matemático de Precisión Simple usando el Spartan 3E

Figura 5.- Datapath y pipeline

El código en VHDL general es el siguiente:

LIBRARY ieee ;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_misc.ALL;
USE ieee.std_logic_unsigned.ALL;

LIBRARY work;

-- FPU Operations (fpu_op):
-- 0 = add
-- 1 = sub
-- 2 = mul
-- 3 = div
-- 4 =
-- 5 =
-- 6 =
-- 7 =

-- Rounding Modes (rmode):

-- 0 = round_nearest_even
-- 1 = round_to_zero
-- 2 = round_up
-- 3 = round_down

ENTITY fpu IS
 PORT(
 clk : IN std_logic ;
 fpu_op : IN std_logic_vector (2 downto 0) ;
 opa : IN std_logic_vector (31 downto 0) ;
 opb : IN std_logic_vector (31 downto 0) ;
 rmode : IN std_logic_vector (1 downto 0) ;
 div_by_zero : OUT std_logic ;
 fpout : OUT std_logic_vector (31 downto 0) ;
 ine : OUT std_logic ;
 inf : OUT std_logic ;
 overflow : OUT std_logic ;
 qnan : OUT std_logic ;
 snan : OUT std_logic ;
 underflow : OUT std_logic ;
 zero : OUT std_logic
);
END fpu ;

ARCHITECTURE arch OF fpu IS
 signal opa_r, opb_r : std_logic_vector (31 downto 0);
 signal signa, signb : std_logic ;
 signal sign_fasu : std_logic ;
 signal fracta, fractb : std_logic_vector (26 downto 0);
 signal exp_fasu : std_logic_vector (7 downto 0);
 signal exp_r : std_logic_vector (7 downto 0);
 signal fract_out_d : std_logic_vector (26 downto 0);

 signal co : std_logic ;
 signal fract_out_q : std_logic_vector (27 downto 0);
 signal out_d : std_logic_vector (30 downto 0);
 signal overflow_d, underflow_d : std_logic ;
 signal mul_inf, div_inf : std_logic ;
 signal mul_00, div_00 : std_logic ;
 signal inf_d, ind_d, qnan_d, snan_d, opa_nan, opb_nan : std_logic ;
 signal opa_00, opb_00 : std_logic ;
 signal opa_inf, opb_inf : std_logic ;
 signal opa_dn, opb_dn : std_logic ;
 signal nan_sign_d, result_zero_sign_d : std_logic ;
 signal sign_fasu_r : std_logic ;
 signal exp_mul : std_logic_vector (7 downto 0);
 signal sign_mul : std_logic ;
 signal sign_mul_r : std_logic ;
 signal fracta_mul, fractb_mul : std_logic_vector (23 downto 0);
 signal inf_mul : std_logic ;
 signal inf_mul_r : std_logic ;
 signal exp_ovf : std_logic_vector (1 downto 0);
 signal exp_ovf_r : std_logic_vector (1 downto 0);
 signal sign_exe : std_logic ;
 signal sign_exe_r : std_logic ;
 signal underflow_fmul1_p1, underflow_fmul1_p2, underflow_fmul1_p3 : std_logic ;
 signal underflow_fmul_d : std_logic_vector (2 downto 0);
 signal prod : std_logic_vector (47 downto 0);
 signal quo : std_logic_vector (49 downto 0);
 signal fdiv_opa : std_logic_vector (49 downto 0);
 signal remainder : std_logic_vector (49 downto 0);
 signal remainder_00 : std_logic ;
 signal div_opa_ldz_d, div_opa_ldz_r1, div_opa_ldz_r2 : std_logic_vector (4 downto
0);
 signal ine_d : std_logic ;
 signal fract_denorm : std_logic_vector (47 downto 0);
 signal fract_div : std_logic_vector (47 downto 0);
 signal sign_d : std_logic ;
 signal sign : std_logic ;
 signal opa_r1 : std_logic_vector (30 downto 0);
 signal fract_i2f : std_logic_vector (47 downto 0);
 signal opas_r1, opas_r2 : std_logic ;
 signal f2i_out_sign : std_logic ;
 signal fasu_op_r1, fasu_op_r2 : std_logic ;
 signal out_fixed : std_logic_vector (30 downto 0);
 signal output_zero_fasu : std_logic ;
 signal output_zero_fdiv : std_logic ;
 signal output_zero_fmul : std_logic ;
 signal inf_mul2 : std_logic ;
 signal overflow_fasu : std_logic ;
 signal overflow_fmul : std_logic ;
 signal overflow_fdiv : std_logic ;
 signal inf_fmul : std_logic ;
 signal sign_mul_final : std_logic ;
 signal out_d_00 : std_logic ;
 signal sign_div_final : std_logic ;
 signal ine_mul, ine_mula, ine_div, ine_fasu : std_logic ;
 signal underflow_fasu, underflow_fmul, underflow_fdiv : std_logic ;
 signal underflow_fmul1 : std_logic ;
 signal underflow_fmul_r : std_logic_vector (2 downto 0);
 signal opa_nan_r : std_logic ;
 signal mul_uf_del : std_logic ;
 signal uf2_del, ufb2_del, ufc2_del, underflow_d_del : std_logic ;
 signal co_del : std_logic ;
 signal out_d_del : std_logic_vector (30 downto 0);
 signal ov_fasu_del, ov_fmul_del : std_logic ;
 signal fop : std_logic_vector (2 downto 0);
 signal ldza_del : std_logic_vector (4 downto 0);
 signal quo_del : std_logic_vector (49 downto 0);
 signal rmode_r1, rmode_r2, rmode_r3 : std_logic_vector (1 downto 0);
 signal fpu_op_r1, fpu_op_r2, fpu_op_r3 : std_logic_vector (2 downto 0);
 signal fpu_op_r1_0_not : std_logic ;
 signal fasu_op, co_d : std_logic ;
 signal post_norm_output_zero : std_logic ;

 CONSTANT INF_VAL : std_logic_vector(31 DOWNTO 0) := X"7f800000";
 CONSTANT QNAN_VAL : std_logic_vector(31 DOWNTO 0) := X"7fc00001";
 CONSTANT SNAN_VAL : std_logic_vector(31 DOWNTO 0) := X"7f800001";

 COMPONENT add_sub27
 PORT(
 add : IN std_logic ;
 opa : IN std_logic_vector (26 downto 0) ;
 opb : IN std_logic_vector (26 downto 0) ;
 co : OUT std_logic ;
 sum : OUT std_logic_vector (26 downto 0)
);
 END COMPONENT;

84Polibits (38) 2008

J. Antonio Álvarez y Michael Lindig B.

 COMPONENT div_r2
 PORT(
 clk : IN std_logic ;
 opa : IN std_logic_vector (49 downto 0) ;
 opb : IN std_logic_vector (23 downto 0) ;
 quo : OUT std_logic_vector (49 downto 0) ;
 remainder : OUT std_logic_vector (49 downto 0)
);
 END COMPONENT;

 COMPONENT except IS
 PORT(
 clk : IN std_logic ;
 opa : IN std_logic_vector (31 downto 0) ;
 opb : IN std_logic_vector (31 downto 0) ;
 ind : OUT std_logic ;
 inf : OUT std_logic ;
 opa_00 : OUT std_logic ;
 opa_dn : OUT std_logic ;
 opa_inf : OUT std_logic ;
 opa_nan : OUT std_logic ;
 opb_00 : OUT std_logic ;
 opb_dn : OUT std_logic ;
 opb_inf : OUT std_logic ;
 opb_nan : OUT std_logic ;
 qnan : OUT std_logic ;
 snan : OUT std_logic
);
 END COMPONENT ;

 COMPONENT mul_r2 IS
 PORT(
 clk : IN std_logic ;
 opa : IN std_logic_vector (23 downto 0) ;
 opb : IN std_logic_vector (23 downto 0) ;
 prod : OUT std_logic_vector (47 downto 0)
);
 END COMPONENT;

 COMPONENT post_norm IS
 PORT(
 clk : IN std_logic ;
 div_opa_ldz : IN std_logic_vector (4 downto 0) ;
 exp_in : IN std_logic_vector (7 downto 0) ;
 exp_ovf : IN std_logic_vector (1 downto 0) ;
 fpu_op : IN std_logic_vector (2 downto 0) ;
 fract_in : IN std_logic_vector (47 downto 0) ;
 opa_dn : IN std_logic ;
 opas : IN std_logic ;
 opb_dn : IN std_logic ;
 output_zero : IN std_logic ;
 rem_00 : IN std_logic ;
 rmode : IN std_logic_vector (1 downto 0) ;
 sign : IN std_logic ;
 f2i_out_sign : OUT std_logic ;
 fpout : OUT std_logic_vector (30 downto 0) ;
 ine : OUT std_logic ;
 overflow : OUT std_logic ;
 underflow : OUT std_logic
);
 END COMPONENT;

 COMPONENT pre_norm IS
 PORT(
 add : IN std_logic ;
 clk : IN std_logic ;
 opa : IN std_logic_vector (31 downto 0) ;
 opa_nan : IN std_logic ;
 opb : IN std_logic_vector (31 downto 0) ;
 opb_nan : IN std_logic ;
 rmode : IN std_logic_vector (1 downto 0) ;
 exp_dn_out : OUT std_logic_vector (7 downto 0) ;
 fasu_op : OUT std_logic ;
 fracta_out : OUT std_logic_vector (26 downto 0) ;
 fractb_out : OUT std_logic_vector (26 downto 0) ;
 nan_sign : OUT std_logic ;
 result_zero_sign : OUT std_logic ;
 sign : OUT std_logic
);
 END COMPONENT;

 COMPONENT pre_norm_fmul IS
 PORT(

 clk : IN std_logic ;
 fpu_op : IN std_logic_vector (2 downto 0) ;
 opa : IN std_logic_vector (31 downto 0) ;
 opb : IN std_logic_vector (31 downto 0) ;
 exp_out : OUT std_logic_vector (7 downto 0) ;
 exp_ovf : OUT std_logic_vector (1 downto 0) ;
 fracta : OUT std_logic_vector (23 downto 0) ;
 fractb : OUT std_logic_vector (23 downto 0) ;
 inf : OUT std_logic ;
 sign : OUT std_logic ;
 sign_exe : OUT std_logic ;
 underflow : OUT std_logic_vector (2 downto 0)
);
 END COMPONENT;

BEGIN

 PROCESS (clk)
 BEGIN
 IF clk'event AND clk = '1' THEN
 opa_r <= opa;
 opb_r <= opb;
 rmode_r1 <= rmode;
 rmode_r2 <= rmode_r1;
 rmode_r3 <= rmode_r2;
 fpu_op_r1 <= fpu_op;
 fpu_op_r2 <= fpu_op_r1;
 fpu_op_r3 <= fpu_op_r2;
 END IF;
 END PROCESS;

 -- Exceptions block

 u0 : except
 PORT MAP (
 clk => clk,
 opa => opa_r,
 opb => opb_r,
 inf => inf_d,
 ind => ind_d,
 qnan => qnan_d,
 snan => snan_d,
 opa_nan => opa_nan,
 opb_nan => opb_nan,
 opa_00 => opa_00,
 opb_00 => opb_00,
 opa_inf => opa_inf,
 opb_inf => opb_inf,
 opa_dn => opa_dn,
 opb_dn => opb_dn
);

 -- Pre-Normalize block
 -- Adjusts the numbers to equal exponents and sorts them
 -- determine result sign
 -- determine actual operation to perform (add or sub)

 fpu_op_r1_0_not <= NOT fpu_op_r1(0);
 u1 : pre_norm
 PORT MAP (
 clk => clk, -- System Clock
 rmode => rmode_r2, -- Roundin Mode
 add => fpu_op_r1_0_not, -- Add/Sub Input
 opa => opa_r,
 opb => opb_r, -- Registered OP Inputs
 opa_nan => opa_nan, -- OpA is a NAN indicator
 opb_nan => opb_nan, -- OpB is a NAN indicator
 fracta_out => fracta, -- Equalized and sorted fraction
 fractb_out => fractb, -- outputs (Registered
 exp_dn_out => exp_fasu, -- Selected exponent output (registered;
 sign => sign_fasu, -- Encoded output Sign (registered)
 nan_sign => nan_sign_d, -- Output Sign for NANs (registered)
 result_zero_sign => result_zero_sign_d, -- Output Sign for zero result
(registered)
 fasu_op => fasu_op -- Actual fasu operation output (registered)
);

 u2 : pre_norm_fmul
 PORT MAP (
 clk => clk,
 fpu_op => fpu_op_r1,
 opa => opa_r,
 opb => opb_r,

85 Polibits (38) 2008

Diseño de un Coprocesador Matemático de Precisión Simple usando el Spartan 3E

 fracta => fracta_mul,
 fractb => fractb_mul,
 exp_out => exp_mul, -- FMUL exponent output => registered)
 sign => sign_mul, -- FMUL sign output (registered)
 sign_exe => sign_exe, -- FMUL exception sign output (registered)
 inf => inf_mul, -- FMUL inf output (registered)
 exp_ovf => exp_ovf, -- FMUL exponnent overflow output (registered)
 underflow => underflow_fmul_d
);

 PROCESS (clk)
 BEGIN
 IF clk'event AND clk = '1' THEN
 sign_mul_r <= sign_mul;
 sign_exe_r <= sign_exe;
 inf_mul_r <= inf_mul;
 exp_ovf_r <= exp_ovf;
 sign_fasu_r <= sign_fasu;
 END IF;
 END PROCESS;

--
--
-- Add/Sub
--

 u3 : add_sub27
 PORT MAP (
 add => fasu_op, -- Add/Sub
 opa => fracta, -- Fraction A input
 opb => fractb, -- Fraction B Input
 sum => fract_out_d, -- SUM output
 co => co_d); -- Carry Output

 PROCESS (clk)
 BEGIN
 IF clk'event AND clk = '1' THEN
 fract_out_q <= co_d & fract_out_d;
 END IF;
 END PROCESS;

--
--
-- Mul
--

 u5 : mul_r2 PORT MAP (clk => clk, opa => fracta_mul, opb => fractb_mul, prod
=> prod);

--
--
-- Divide
--
PROCESS (fracta_mul)
BEGIN
 IF fracta_mul(22) = '1' THEN div_opa_ldz_d <= conv_std_logic_vector(1,5);
 ELSIF fracta_mul(22 DOWNTO 21) = "01" THEN div_opa_ldz_d <=
conv_std_logic_vector(2,5);
 ELSIF fracta_mul(22 DOWNTO 20) = "001" THEN div_opa_ldz_d <=
conv_std_logic_vector(3,5);
 ELSIF fracta_mul(22 DOWNTO 19) = "0001" THEN div_opa_ldz_d <=
conv_std_logic_vector(4,5);
 ELSIF fracta_mul(22 DOWNTO 18) = "00001" THEN div_opa_ldz_d <=
conv_std_logic_vector(5,5);
 ELSIF fracta_mul(22 DOWNTO 17) = "000001" THEN div_opa_ldz_d <=
conv_std_logic_vector(6,5);
 ELSIF fracta_mul(22 DOWNTO 16) = "0000001" THEN div_opa_ldz_d <=
conv_std_logic_vector(7,5);
 ELSIF fracta_mul(22 DOWNTO 15) = "00000001" THEN div_opa_ldz_d <=
conv_std_logic_vector(8,5);
 ELSIF fracta_mul(22 DOWNTO 14) = "000000001" THEN div_opa_ldz_d <=
conv_std_logic_vector(9,5);
 ELSIF fracta_mul(22 DOWNTO 13) = "0000000001" THEN div_opa_ldz_d <=
conv_std_logic_vector(10,5);
 ELSIF fracta_mul(22 DOWNTO 12) = "00000000001" THEN div_opa_ldz_d <=
conv_std_logic_vector(11,5);
 ELSIF fracta_mul(22 DOWNTO 11) = "000000000001" THEN div_opa_ldz_d <=
conv_std_logic_vector(12,5);
 ELSIF fracta_mul(22 DOWNTO 10) = "0000000000001" THEN div_opa_ldz_d <=
conv_std_logic_vector(13,5);
 ELSIF fracta_mul(22 DOWNTO 9) = "00000000000001" THEN div_opa_ldz_d <=
conv_std_logic_vector(14,5);

 ELSIF fracta_mul(22 DOWNTO 8) = "000000000000001" THEN div_opa_ldz_d
<= conv_std_logic_vector(15,5);
 ELSIF fracta_mul(22 DOWNTO 7) = "0000000000000001" THEN div_opa_ldz_d
<= conv_std_logic_vector(16,5);
 ELSIF fracta_mul(22 DOWNTO 6) = "00000000000000001" THEN div_opa_ldz_d
<= conv_std_logic_vector(17,5);
 ELSIF fracta_mul(22 DOWNTO 5) = "000000000000000001" THEN
div_opa_ldz_d <= conv_std_logic_vector(18,5);
 ELSIF fracta_mul(22 DOWNTO 4) = "0000000000000000001" THEN
div_opa_ldz_d <= conv_std_logic_vector(19,5);
 ELSIF fracta_mul(22 DOWNTO 3) = "00000000000000000001" THEN
div_opa_ldz_d <= conv_std_logic_vector(20,5);
 ELSIF fracta_mul(22 DOWNTO 2) = "000000000000000000001" THEN
div_opa_ldz_d <= conv_std_logic_vector(21,5);
 ELSIF fracta_mul(22 DOWNTO 1) = "0000000000000000000001" THEN
div_opa_ldz_d <= conv_std_logic_vector(22,5);
 ELSIF fracta_mul(22 DOWNTO 1) = "0000000000000000000000" THEN
div_opa_ldz_d <= conv_std_logic_vector(23,5);
 ELSE div_opa_ldz_d <= (OTHERS => 'X');
 END IF;
END PROCESS;

 fdiv_opa <= ((SHL(fracta_mul,div_opa_ldz_d)) &
 "00" & X"000000") WHEN
 ((or_reduce(opa_r(30 DOWNTO 23)))='0') ELSE
 (fracta_mul & "00" & X"000000");

 u6 : div_r2 PORT MAP (clk => clk, opa => fdiv_opa, opb => fractb_mul,
 quo => quo,
 remainder => remainder);

 remainder_00 <= NOT or_reduce(remainder);

 PROCESS (clk)
 BEGIN
 IF clk'event AND clk = '1' THEN
 div_opa_ldz_r1 <= div_opa_ldz_d;
 div_opa_ldz_r2 <= div_opa_ldz_r1;
 END IF;
 END PROCESS;

--
--
-- Normalize Result
--

 PROCESS (clk)
 BEGIN
 IF clk'event AND clk = '1' THEN
 CASE fpu_op_r2 IS
 WHEN "000" => exp_r <= exp_fasu;
 WHEN "001" => exp_r <= exp_fasu;
 WHEN "010" => exp_r <= exp_mul;
 WHEN "011" => exp_r <= exp_mul;
 WHEN "100" => exp_r <= (others => '0');
 WHEN "101" => exp_r <= opa_r1(30 downto 23);
 WHEN OTHERS => exp_r <= (others => '0');
 END case;
 END IF;
 END PROCESS;

 fract_div <= quo(49 DOWNTO 2) WHEN (opb_dn = '1') ELSE
 (quo(26 DOWNTO 0) & '0' & X"00000");

 PROCESS (clk)
 BEGIN
 IF clk'event AND clk = '1' THEN
 opa_r1 <= opa_r(30 DOWNTO 0);
 IF fpu_op_r2="101" THEN
 IF sign_d = '1' THEN
 fract_i2f <= conv_std_logic_vector(1,48)-(X"000000" &
 (or_reduce(opa_r1(30 downto 23))) &
 opa_r1(22 DOWNTO 0))-conv_std_logic_vector(1,48);
 ELSE
 fract_i2f <= (X"000000" &
 (or_reduce(opa_r1(30 downto 23))) &
 opa_r1(22 DOWNTO 0));
 END IF;
 ELSE
 IF sign_d = '1' THEN
 fract_i2f <= conv_std_logic_vector(1,48) - (opa_r1 & X"0000" & '1');
 ELSE
 fract_i2f <= (opa_r1 & '0' & X"0000");
 END IF;

86Polibits (38) 2008

J. Antonio Álvarez y Michael Lindig B.

 END IF;
 END IF;
 END PROCESS;

 PROCESS (fpu_op_r3,fract_out_q,prod,fract_div,fract_i2f)
 BEGIN
 CASE fpu_op_r3 IS
 WHEN "000" => fract_denorm <= (fract_out_q & X"00000");
 WHEN "001" => fract_denorm <= (fract_out_q & X"00000");
 WHEN "010" => fract_denorm <= prod;
 WHEN "011" => fract_denorm <= fract_div;
 WHEN "100" => fract_denorm <= fract_i2f;
 WHEN "101" => fract_denorm <= fract_i2f;
 WHEN OTHERS => fract_denorm <= (others => '0');
 END case;
 END PROCESS;

 PROCESS (clk, opa_r(31),opas_r1,rmode_r2,sign_d)
 BEGIN
 IF clk'event AND clk = '1' THEN
 opas_r1 <= opa_r(31);
 opas_r2 <= opas_r1;
 IF rmode_r2="11" THEN
 sign <= NOT sign_d;
 ELSE
 sign <= sign_d;
 END IF;
 END if;
 END PROCESS;

 sign_d <= sign_mul WHEN (fpu_op_r2(1) = '1') ELSE sign_fasu;

 post_norm_output_zero <= mul_00 or div_00;
 u4 : post_norm
 PORT MAP (
 clk => clk, -- System Clock
 fpu_op => fpu_op_r3, -- Floating Point Operation
 opas => opas_r2, -- OPA Sign
 sign => sign, -- Sign of the result
 rmode => rmode_r3, -- Rounding mode
 fract_in => fract_denorm, -- Fraction Input
 exp_ovf => exp_ovf_r, -- Exponent Overflow
 exp_in => exp_r, -- Exponent Input
 opa_dn => opa_dn, -- Operand A Denormalized
 opb_dn => opb_dn, -- Operand A Denormalized
 rem_00 => remainder_00, -- Diveide Remainder is zero
 div_opa_ldz => div_opa_ldz_r2, -- Divide opa leading zeros count
 output_zero => post_norm_output_zero, -- Force output to Zero
 fpout => out_d, -- Normalized output (un-registered)
 ine => ine_d, -- Result Inexact output (un-registered)
 overflow => overflow_d, -- Overflow output (un-registered)
 underflow => underflow_d, -- Underflow output (un-registered)
 f2i_out_sign => f2i_out_sign -- F2I Output Sign
);

--
--
-- FPU Outputs
--

 PROCESS (clk)
 BEGIN
 IF clk'event AND clk = '1' THEN
 fasu_op_r1 <= fasu_op;
 fasu_op_r2 <= fasu_op_r1;
 IF exp_mul = X"ff" THEN
 inf_mul2 <= '1';
 ELSE
 inf_mul2 <= '0';
 END IF;
 END IF;
 END PROCESS;

 -- Force pre-set values for non numerical output
 mul_inf <= '1' WHEN ((fpu_op_r3="010") and ((inf_mul_r or inf_mul2)='1') and
 (rmode_r3="00")) else '0';

 div_inf <= '1' WHEN ((fpu_op_r3="011") and
 ((opb_00 or opa_inf)='1')) ELSE '0';

 mul_00 <= '1' WHEN ((fpu_op_r3="010") and ((opa_00 or opb_00)='1')) ELSE '0';
 div_00 <= '1' WHEN ((fpu_op_r3="011") and ((opa_00 or opb_inf)='1')) else '0';

 out_fixed <= QNAN_VAL(30 DOWNTO 0) WHEN
 (((qnan_d OR snan_d) OR (ind_d AND NOT fasu_op_r2) OR
 ((NOT fpu_op_r3(2) AND fpu_op_r3(1) AND fpu_op_r3(0)) AND opb_00
AND opa_00) OR
 (((opa_inf AND opb_00) OR (opb_inf AND opa_00)) AND
 (NOT fpu_op_r3(2) AND fpu_op_r3(1) AND NOT fpu_op_r3(0)))
)='1')
 ELSE INF_VAL(30 DOWNTO 0);

 PROCESS (clk)
 BEGIN
 IF clk'event AND clk = '1' THEN
 IF (((mul_inf='1') or (div_inf='1') or
 ((inf_d='1') and (fpu_op_r3/="011") and (fpu_op_r3/="101")) or
 (snan_d='1') or (qnan_d='1')) and (fpu_op_r3/="100")) THEN
 fpout(30 DOWNTO 0) <= out_fixed;
 ELSE
 fpout(30 DOWNTO 0) <= out_d;
 END IF;
 END IF;
 END PROCESS;

 out_d_00 <= NOT or_reduce(out_d);

 sign_mul_final <= NOT sign_mul_r WHEN
 ((sign_exe_r AND ((opa_00 AND opb_inf) OR
 (opb_00 AND opa_inf)))='1')
 ELSE sign_mul_r;
 sign_div_final <= NOT sign_mul_r WHEN
 ((sign_exe_r and (opa_inf and opb_inf))='1')
 ELSE (sign_mul_r or (opa_00 and opb_00));

 PROCESS (clk)
 BEGIN
 IF clk'event AND clk = '1' THEN
 If ((fpu_op_r3="101") and (out_d_00='1')) THEN
 fpout(31) <= (f2i_out_sign and not(qnan_d OR snan_d));
 ELSIF ((fpu_op_r3="010") and ((snan_d or qnan_d)='0')) THEN
 fpout(31) <= sign_mul_final;
 ELSIF ((fpu_op_r3="011") and ((snan_d or qnan_d)='0')) THEN
 fpout(31) <= sign_div_final;
 ELSIF ((snan_d or qnan_d or ind_d) = '1') THEN
 fpout(31) <= nan_sign_d;
 ELSIF (output_zero_fasu = '1') THEN
 fpout(31) <= result_zero_sign_d;
 ELSE
 fpout(31) <= sign_fasu_r;
 END IF;
 END IF;
 END PROCESS;

-- Exception Outputs
 ine_mula <= ((inf_mul_r OR inf_mul2 OR opa_inf OR opb_inf) AND
 (NOT rmode_r3(1) AND rmode_r3(0)) and
 NOT ((opa_inf AND opb_00) OR (opb_inf AND opa_00)) AND
fpu_op_r3(1));

 ine_mul <= (ine_mula OR ine_d OR inf_fmul OR out_d_00 OR overflow_d OR
underflow_d) AND
 NOT opa_00 and NOT opb_00 and NOT (snan_d OR qnan_d OR inf_d);
 ine_div <= (ine_d OR overflow_d OR underflow_d) AND NOT (opb_00 OR snan_d
OR qnan_d OR inf_d);
 ine_fasu <= (ine_d OR overflow_d OR underflow_d) AND NOT (snan_d OR qnan_d
OR inf_d);

 PROCESS (clk)
 BEGIN
 IF clk'event AND clk = '1' THEN
 IF fpu_op_r3(2) = '1' THEN
 ine <= ine_d;
 ELSIF fpu_op_r3(1) = '0' THEN
 ine <= ine_fasu;
 ELSIF fpu_op_r3(0)='1' THEN
 ine <= ine_div;
 ELSE
 ine <= ine_mul;
 END IF;
 END IF;
 END PROCESS;

 overflow_fasu <= overflow_d AND NOT (snan_d OR qnan_d OR inf_d);
 overflow_fmul <= NOT inf_d AND

87 Polibits (38) 2008

Diseño de un Coprocesador Matemático de Precisión Simple usando el Spartan 3E

 (inf_mul_r OR inf_mul2 OR overflow_d) AND
 NOT (snan_d OR qnan_d);

 overflow_fdiv <= (overflow_d AND NOT (opb_00 OR inf_d OR snan_d OR qnan_d));

 PROCESS (clk)
 BEGIN
 IF clk'event AND clk = '1' THEN
 underflow_fmul_r <= underflow_fmul_d;
 IF fpu_op_r3(2) ='1' THEN
 overflow <= '0';
 ELSIF fpu_op_r3(1) = '0' THEN
 overflow <= overflow_fasu;
 ELSIF fpu_op_r3(0) = '1' THEN
 overflow <= overflow_fdiv;
 ELSE
 overflow <= overflow_fmul;
 END IF;
 END IF;
 END PROCESS;

 underflow_fmul1_p1 <= '1' WHEN (out_d(30 DOWNTO 23) = X"00") else '0';
 underflow_fmul1_p2 <= '1' WHEN (out_d(22 DOWNTO 0) = ("000" & X"00000"))
else '0';
 underflow_fmul1_p3 <= '1' WHEN (prod/=conv_std_logic_vector(0,48)) else '0';

 underflow_fmul1 <= underflow_fmul_r(0) or
 (underflow_fmul_r(1) and underflow_d) or
 ((opa_dn or opb_dn) and out_d_00 and (underflow_fmul1_p3) and sign)
or
 (underflow_fmul_r(2) AND
 ((underflow_fmul1_p1) or (underflow_fmul1_p2)));

 underflow_fasu <= underflow_d AND NOT (inf_d or snan_d or qnan_d);
 underflow_fmul <= underflow_fmul1 AND NOT (snan_d or qnan_d or inf_mul_r);
 underflow_fdiv <= underflow_fasu AND NOT opb_00;

 PROCESS (clk)
 BEGIN
 IF clk'event AND clk = '1' THEN
 IF fpu_op_r3(2) = '1' THEN
 underflow <= '0';
 ELSIF fpu_op_r3(1) = '0' THEN
 underflow <= underflow_fasu;
 ELSIF fpu_op_r3(0) = '1' THEN
 underflow <= underflow_fdiv;
 ELSE
 underflow <= underflow_fmul;
 END IF;
 snan <= snan_d;
 END IF;
 END PROCESS;

-- Status Outputs
 PROCESS (clk)
 BEGIN
 IF clk'event AND clk = '1' THEN
 IF fpu_op_r3(2)='1' THEN
 qnan <= '0';
 ELSE
 qnan <= snan_d OR qnan_d OR (ind_d AND NOT fasu_op_r2) OR
 (opa_00 AND opb_00 AND
 (NOT fpu_op_r3(2) AND fpu_op_r3(1) AND fpu_op_r3(0))) OR
 (((opa_inf AND opb_00) OR (opb_inf AND opa_00)) AND
 (NOT fpu_op_r3(2) AND fpu_op_r3(1) AND NOT fpu_op_r3(0)));

 END IF;
 END IF;
 END PROCESS;

 inf_fmul <= (((inf_mul_r OR inf_mul2) AND (NOT rmode_r3(1) AND NOT
rmode_r3(0)))
 OR opa_inf OR opb_inf) AND
 NOT ((opa_inf AND opb_00) OR (opb_inf AND opa_00)) AND
 (NOT fpu_op_r3(2) AND fpu_op_r3(1) AND NOT fpu_op_r3(0));

 PROCESS (clk)
 BEGIN
 IF clk'event AND clk = '1' THEN
 IF fpu_op_r3(2) = '1' THEN
 inf <= '0';
 ELSE
 inf <= (NOT (qnan_d OR snan_d) AND
 (((and_reduce(out_d(30 DOWNTO 23))) AND

 NOT (or_reduce(out_d(22 downto 0))) AND
 NOT(opb_00 AND NOT fpu_op_r3(2) AND fpu_op_r3(1) AND
fpu_op_r3(0))) OR
 (inf_d AND NOT (ind_d AND NOT fasu_op_r2) AND NOT fpu_op_r3(1))
OR
 inf_fmul OR
 (NOT opa_00 AND opb_00 AND
 NOT fpu_op_r3(2) AND fpu_op_r3(1) AND fpu_op_r3(0)) or
 (NOT fpu_op_r3(2) AND fpu_op_r3(1) AND fpu_op_r3(0) AND
 opa_inf AND NOT opb_inf)
)
);
 END IF;
 END IF;
 END PROCESS;

 output_zero_fasu <= out_d_00 AND NOT (inf_d OR snan_d OR qnan_d);
 output_zero_fdiv <= (div_00 OR (out_d_00 AND NOT opb_00)) AND NOT (opa_inf
AND opb_inf) AND
 NOT (opa_00 AND opb_00) AND NOT (qnan_d OR snan_d);
 output_zero_fmul <= (out_d_00 OR opa_00 OR opb_00) AND
 NOT (inf_mul_r OR inf_mul2 OR opa_inf OR opb_inf OR
 snan_d OR qnan_d) AND
 NOT (opa_inf AND opb_00) AND NOT (opb_inf AND opa_00);

 PROCESS (clk)
 BEGIN
 IF clk'event AND clk = '1' THEN
 IF fpu_op_r3="101" THEN
 zero <= out_d_00 and NOT (snan_d or qnan_d);
 ELSIF fpu_op_r3="011" THEN
 zero <= output_zero_fdiv;
 ELSIF fpu_op_r3="010" THEN
 zero <= output_zero_fmul;
 ELSE
 zero <= output_zero_fasu;
 END IF;
 IF (opa_nan = '0') AND (fpu_op_r2="011") THEN
 opa_nan_r <= '1';
 ELSE
 opa_nan_r <= '0';
 END IF;
 div_by_zero <= opa_nan_r AND NOT opa_00 AND NOT opa_inf AND opb_00;
 END IF;
 END PROCESS;

END arch;

En la Fig. 6 se muestra la entidad elaborada.

Fig. 6. Pantalla del ise de Xilinx con la entidad general

88Polibits (38) 2008

J. Antonio Álvarez y Michael Lindig B.

IV. CONCLUSIONES
En este proyecto se mostró las características y el poder

existente en el uso de VHDL y su simplicidad para usarlos en
proyectos mas robustos para aplicarlos en FPGA, En el caso
de la unidad de punto flotante construida, se pudo observar el
mismo comportamiento y se implementaron en ellas las
operaciones comunes como es la suma , la multiplicación y la
división, todas las operaciones de simple precisión y de punto
flotante, también se muestra el pipeline, estrategias de
verificación y síntesis.

REFERENCIAS
[1] Rudolf Usselman. Documentation for Floating Point Unit,

http://www.opencores.org.
[1] John L. Hennessy and David A. Patterson. Computer Architecture: A

Quantitative Approach. 2nd Edition, Morgan Kaufmann, 2007, 708 p.
[2] Peter J. Ashenden. The Designer's Guide to VHDL, Morgan Kaufmann,

1995, 688 p.
[3] Donald E. Thomas and Philip R. Moorby. The Verilog Hardware

Description Language, Kluwer Academic Publishers, 2002, 408 p.
[4] Stuart Oberman. Design Issues in High Performance Floating-Point

Arithmetic Units. Stanford University, Technical report, 1996.
[5] IEEE, IEEE-754-1985 Standard for binary floating-point arithmetic.

89 Polibits (38) 2008

Diseño de un Coprocesador Matemático de Precisión Simple usando el Spartan 3E

90Polibits (38) 2008

I. JOURNAL INFORMATION

“Polibits” is a half-yearly research journal published since
1989 by the Center for Technological Design and
Development in Computer Science (CIDETEC) of the
National Polytechnic Institute (IPN) in Mexico City, Mexico.
The journal solicits original research papers in all areas of
computer science and computer engineering, with emphasis
on applied research.

The journal has double-blind review procedure. It publishes
papers in English and Spanish.

Publication has no cost for the authors.

A. Main topics of interest
The journal publishes research papers in all areas of

computer science and computer engineering, with emphasis
on applied research.

More specifically, the main topics of interest include,
though are not limited to, the following:

− Artificial Intelligence
− Natural Language Processing
− Fuzzy Logic
− Computer Vision
− Multiagent Systems
− Bioinformatics
− Neural Networks
− Evolutionary algorithms
− Knowledge Representation
− Expert Systems
− Intelligent Interfaces: Multimedia, Virtual Reality
− Machine Learning
− Pattern Recognition
− Intelligent Tutoring Systems
− Semantic Web
− Database Systems
− Data Mining
− Software Engineering
− Web Design
− Compilers
− Formal Languages
− Operating Systems
− Distributed Systems
− Parallelism
− Real Time Systems
− Algorithm Theory
− Scientific Computing
− High-Performance Computing
− Geo-processing

− Networks and Connectivity
− Cryptography
− Informatics Security
− Digital Systems Design
− Digital Signal Processing
− Control Systems
− Robotics
− Virtual Instrumentation
− Computer Architecture
− other.

B. Indexing
The journal indexing is in process.

II. INSTRUCTIONS FOR AUTHORS

A. Submission
Papers ready to review are received through the Web

submission system www.easychair.org/polibits
The papers can be written in English or Spanish.
Since the review procedure is double-blind, the full text of

the papers should be submitted without names and affiliations
of the authors and without any other data that reveals the
authors’ identity.

For review, a file in one of the following formats is to be
submitted: PDF (preferred), PS, Word. In case of acceptance,
you will need to upload your source file in Word (for the
moment, we do not accept TeX files, if you are interested to
submit a paper in TeX, please, contact the editor). We will
send you further instructions on uploading your camera-ready
source files upon acceptance notification.

Deadline for the nearest issue (January-June 2009): January
15, 2009. Papers received after this date will be considered for
the next issue (July-December 2009).

B. Format
Please, use IEEE format1, see section "Template for all

Transactions (except IEEE Transactions on Magnetics)". The
editors keep the right to modify the format of the final version
of the paper if necessary.

We do not have any specific page limit: we welcome both
short and long papers, provided the quality and novelty of the
paper adequately justifies the length.

Submissions in another format can be reviewed, but the use
of the recommended format is encouraged.

In case of being written in Spanish, the paper should also
contain the title, abstract, and keywords in English.

1 www.ieee.org/web/publications/authors/transjnl/index.html

Journal Information and Instructions for Authors

	blank1.pdf
	1_diaconescu_Fin.pdf
	2_lakshmana_Fin.pdf
	blank2.pdf
	3_nadia_FIN.pdf
	blank3.pdf
	4_saha_fin.pdf
	blank4.pdf
	5_sepulveda.pdf
	blank5.pdf
	6_tran_Fin.pdf
	7_cruz_Fin.pdf
	blank6.pdf
	8_snae_fin.pdf
	9_lozada-Fin.pdf
	blank7.pdf
	10_lindig_fin2.pdf

