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Abstract—The School Bus Routing Problem is a type of Vehicle 

Routing Problem that aims to optimize the planning of bus routes for a 

school. This problem has received increased interest in the last decade. 

One of the aspects that stand out most in the progress of optimization 

problems is making them as close to reality as possible. In this sense, 

fuzzy optimization is a suitable way to do this by considering certain 

levels of uncertainty. Although the fuzzy approach has been applied to 

the Vehicle Routing Problem, it has not been so with the School Bus 

Routing Problem. Therefore, the objective of this paper is to introduce a 

fuzzy model for the School Bus Routing Problem, particularly with the 

maximum student walking distance as a fuzzy element. This fuzzy 

version of the School Bus Routing Problem allows obtaining a set of 

solutions with different trade-offs between cost and relaxation of the 

original conditions. The results obtained in 31 instances by using the 

parametric approach are analyzed, taking into account three 

characteristics of the problem: number of bus stops, number of students, 

and walking distance. It is shown that the introduced fuzzy version is 

useful for decision-makers by providing relaxed alternative solutions 

with significant cost savings. 

Index Terms—Fuzzy optimization, parametric approach, School Bus 

Routing Problem. 

1. INTRODUCTION 

HE SCHOOL Bus Routing Problem (SBRP) aims to create, 

in an optimal way, a set of routes for the transportation of 

students to their schools from different locations [1]. This prob-

lem has been extensively studied since the publication of [2]. 

The SBRP is considered a type of Vehicle Routing Problem 

(VRP) [3]. From the point of view of optimization, in the creation 

of the routes, several objectives may be taken into account, e.g., 

minimizing the total distance traveled [4] or minimizing the 

number of buses to be used [5]. Also, a set of restrictions must be 

met, e.g., the capacity of buses [6] or the entry and exit times to 

schools [7]. The SBRP has been applied in different settings, e.g., 

in [8], workers are transported to their places of work instead of 

students. 

On the other hand, the management of uncertainty is one of 

the ways to obtain models and solutions to situations more simi-

lar to reality. Two outstanding techniques for uncertainty man-

agement are stochastic approximations [9] (where some of the 

elements of the problem present a random behavior) and fuzzy 

optimization [10], where some elements involve certain levels of 

subjectivity or ambiguity. 

In the case of fuzzy optimization, there are several studies on 

its application in VRP, its variants, and in other optimization 

routing problems. For example, in [11], several models were 

developed for variants of the VRP with imprecise travel times 

modeled as fuzzy triangular numbers. The authors of [12] present 

a fuzzy multi-objective optimization problem to model single 

frequency routes bus timetabling and solve the model by a kind 

of genetic algorithm. In [13], a model for the Truck and Trailer 

Routing Problem (TTRP) with imprecise capacity restrictions and 

fuzzy treatment was proposed. More recently, [14] presented an 

integrated production inventory routing problem (IRP) with fuzzy 

approximation in the demand of retailers. Likewise, in [15], the 

Fuzzy Green Vehicle Routing Problem (FGVRP) is considered 

for the design of a supply chain, where customer demands are 

considered fuzzy. Finally, the authors of [16] introduced a Fuzzy 

Electric Vehicle Routing Problem with time windows and re-

charging stations (FEVRPTW), where fuzzy numbers were used 

to treat the uncertainty of service times, battery energy consump-

tion and travel times. 

As it has been shown, in these examples of VRP models and 

their variants, various aspects have been considered fuzzy, such 

as travel time, service times, customer demand, or vehicle capaci-

ty. However, to the best of our knowledge, similar techniques 

have not been applied to SBRP. Particularly in the SBRP, one of 

the elements that can be treated as fuzzy is the student's walking 

distance to reach the bus stops. The distance has been treated as a 

fuzzy element in other optimization problems, such as the 

MCLP [17] from the point of view of coverage, with interesting 

results. 

When modeling the student walking distance as a fuzzy ele-

ment, the decision-maker interested in the solution of an SBRP 

would have the opportunity to obtain a diverse set of solutions 

with different trade-offs between the relaxation of the original 

constraints and the optimization objectives. With this set of solu-

tions, the decision-maker could select among them the one that 

most satisfies a particular interest. For example, assume an SBRP 

instance where the objective is to minimize the total distance 

traveled by buses and the student's walking distance is restricted 

to 300 meters. In this situation, the best solution, which is the 

sum of all routes, may have a cost of 15 kilometers. However, if 

the walking distance is considered a fuzzy constraint, it may be 

treated in a relaxed way. For example, if the walking distance is 

increased to 350 meters, the best solution may decrease to 13.5 

kilometers, while if the limit is increased to 400 meters, the best 

solution may be 13 kilometers. Hence, the decision-maker would 

have three options. 

In the previous example, a linguistic value can be used to clas-

sify the distance between students and stops. This linguistic value 

can be “admissible” or “not admissible.” When the student's 
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walking distance is treated as fuzzy, this distance can be “admis-

sible” with different degrees of satisfaction in [0,1]. 

Taking these antecedents into account, the objective of this 

work is to introduce a fuzzy model of the SBRP and thus to 

demonstrate its impact on solving this type of problem. In partic-

ular, in the proposal, the restriction that limits the maximum 

student's walking distance becomes fuzzy. 

The rest of the document is organized as follows. Section 2 

addresses the general characteristics of the SBRP and a study of 

the literature on the subject. In Section 3, the mathematical model 

and its fuzzy approach for the SBRP are presented. Section 4 

presents and discusses the experimental results. Finally, the con-

clusions and future work are presented in Section 5. 

2. SCHOOL BUS ROUTING PROBLEM 

The School Bus Routing Problem (SBRP) is defined to ensure an 

optimal transportation policy for the students of a school or 

school district. It was identified as a problem in [2] more than 60 

years ago. However, it is not until the last decades that contribu-

tions to the modeling and solution of this problem have in-

creased. 

According to [18] and [19], the SBRP can be divided into five 

sub-problems: 1) Preparation of data, 2) Selection of bus stops, 3) 

Generation of routes, 4) Route calendar, and 5) Adjustment to 

school bell time. On the other hand, [20] suggests that the prepa-

ration of the data (1) can be part of each sub-problem, and there-

fore treats it as such and not as a sub-problem. Likewise, it de-

scribes a new sub-problem proposed in [21] called strategic 

transportation policies (6). 

There are several approaches for modeling and solving SBRP 

(see [19] and [20]). In this way, the SBRP sub-problems can be 

classified according to: 

1. Number of schools: one or multiple schools. 

2. Service environment: urban or rural. 

3. Load type: distinguishes whether a bus can carry students to 

more than one school. Mixed loads generally refer to allow-

ing a bus to carry students from multiple schools. 

4. Fleet mix: identifies whether the buses under consideration 

have the same capacity (homogeneous) or varying capacities 

(heterogeneous). 

5. Objective: generally, it is the minimization of one or more of 

the following aspects: 

a. Number of buses (N). 

b. Total bus traveled distance or time (TBD). 

c. The total student riding distance or time (TSB). 

d. Total student walking distance (SWD). 

e. Maximum route length (MRL). 

6. Constraints: normally, in each SBRP model, it is proposed to 

meet one or more of the following conditions: 

a. Vehicle capacity (C). 

b. Maximum riding time (MRT). 

c. School Time Window (TW). 

d. Maximum walking time or distance (MWT). 

From the solution point of view, multiple approaches have 

been used, including some exact, heuristic, and metaheuristic 

algorithms. Before the study presented in [19], only a few solu-

tions based on metaheuristics could be found. However in the last 

10 years, the interest in SBRP has substantially increased and 

especially the use of metaheuristic algorithms [20], such as Ge-

netic Algorithms (e.g. [22], [23], [24]), Ant Colonies (e.g. [25], 

[26], [27]), Simulated Annealing (e.g. [28]), Tabu Search (e.g. 

[29], [30]) and GRASP (e.g. [31], [32], [33]). The use of me-

taheuristics in the SBRP solution is mainly due to the increase in 

size and complexity of the instances to be solved. Furthermore, 

these algorithms have been shown to provide good solutions to 

other combinatorial optimization problems similar to the SBRP. 

3. MATHEMATICAL MODEL 

In [34], a metaheuristic solution for SBRP with bus stops selec-

tion and homogeneous fleet was presented. The objective was to 

minimize the total distance traveled by the buses, with constraints 

related to the bus capacity and the students walking distance. 

The fuzzy model presented here is a fuzzy extension of the 

model presented in [34]. The main difference is that the model 

presented here allows a relaxation of the student's walking dis-

tance. In general terms, the new model is described in terms of 

the variables used in [34]. 

 

3.1 Variables 

Input variables 

c: Capacity of each bus. 

b: Number of buses. 

d: Maximum students walking distance. 

P: Set of possible stops. 

E: Set of students. 

Cp: A set of vectors with coordinate pairs of the possible stops. 

Ce: A set of vectors with pairs of coordinates of the house of each 

student. 

Auxiliary Variables 

Cij: Cost matrix between each pair of stops (i, j). 

D: A distance that indicates the cost between a pair of stops or 

between a student and a bus stop. Euclidian distance is used. 

cp
i: Are the coordinates of the stop located on the i index of Cp. 

Cij = {
D(cp

i , cp
j), i ≠ j

0, i = j
 ∀i, ∀j ∈ P  (1) 

Spe: Binary matrix. 1 if the student j can reach the stop i, and 0 

otherwise. 

ce
j: Are the coordinates of the student located on the j index of 

Ce. 

p0: This is the first element of P, which means the location of the 

school. 

≤𝑓: Indicates the imprecision of the constraint (2). 

Spe = {
1, D(cp

i , ce
j) ≤f d

0, D(cp
i , ce

𝑗) >f d
j ∈ E, i ∈ P − {p0}  (2) 

Decision Variables 

Rkm: Indicates the stop that is visited by the bus k in the order m. 

Ze: Indicates the stop where the student e is picked up 
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3.2 Objective Function and Constrains 

Objective Function 

Min ∑ ∑ C[Rkm][Rkm+1]
|P|−1
m=1

b
k=1    (3) 

Constrains 

|{Rkm|Rkm = p}| ≤ 1  

∀p ∈ P − {p0}, ∀k ∈ {1, … , b}, ∀m ∈ {1, … , |P|}  (4) 

{(e, p)|Ze = p} ⊆ {(e, p)|Spe = 1}  

∀e ∈ E, ∀p ∈ P     (5) 

|{e|∃m Rkm = Ze}| ≤ c  

m ∈ {0, … , |P|}, ∀k ∈ {1, … , b}, ∀e ∈ E  (6) 

|{Rkm|Ze =  Rkm}| = 1  

∀e ∈ E      (7) 

The objective function, equation (3), minimizes the total dis-

tance traveled by the entire bus fleet. Equations (4), (5), (6) and 

(7) represent the restrictions that must be met for the solution to 

be feasible. Equation (4) guarantees that each stop is visited at 

most once, except for stop p0, which represents the school, the 

final destination of all buses. Equation (5) ensures that each stu-

dent can reach their assigned bus stop. Equation (6) takes into 

account that the capacity of each bus is not exceeded on the 

route. And, finally, with Equation (7), it is guaranteed that each 

stop to which at least one student is assigned is visited by a bus. 

Concerning the model introduced in [34], the difference is that 

the model in [34] wasn't fuzzy. Particularly, the fuzzy nature of 

the model presented here is related to equation (2), where the 

fuzzy operators (>f, ≤f) are used, replacing the crisp operators (>
, ≤) used in [34]. 

3.3 Fuzzy model for SBRP 

As can be seen in the previous model, restriction (5) depends on 

the value of the auxiliary variable Spe. This is the focus of the 

proposed fuzzy model. The new way of posing this constraint 

implies that the feasibility of a student reaching a stop becomes 

fuzzy (i.e., not crisp) and therefore has different degrees of mem-

bership.  

Taking this element into account, if the maximum walking 

distance for students is 200 meters, then a student that walks 190 

meters satisfies it with a grade of 1. On the other hand, if a stu-

dent walks 210 meters, the degree of membership (degree of 

satisfaction of this constraint) may be less than 1, but higher than 

if the stop is 250 meters away. Conversely, a stop that is located 

500 meters away could be considered unreachable. All these 

values (e.g., 200, 500) will depend on the admissible conditions 

and the allowed tolerance. These values will imply that solutions 

will have different degrees of compliance with the restrictions. 

From the decision-making point of view, this relaxation allows a 

small increase in the distance that the students could walk to find 

a relaxed solution with a better value of the objective function 

(reduced cost). 

To model this situation, it is necessary to define a tolerance H, 

which determines the maximum admissible distance that a stu-

dent could walk. Fig. 1 shows the function to measure the degree 

of compliance with the restriction taking into account the dis-

tance d and the tolerance H. 

 

Fig. 1. Membership function of the compliance of the constraint associated 

with the student walking distance. 

To understand this function, having d as the original maxi-

mum student walking distance and H as the maximum admissible 

tolerance, a student located at any distance less or equal to d has a 

degree of compliance of 1. On the other hand, if the student is 

located at any distance between d and d+H, it has a degree of 

compliance in the interval [0,1]. Finally, if the student location is 

at any distance greater than d+H to a stop, the degree of compli-

ance is 0, and then it is assumed that the student can't reach the 

stop. 

This is a linear function, and the parametric approximation 

method [10] can be applied based on the principles of parametric 

linear programming and the concept of alpha-cuts [10]. The con-

cept of alpha-cut applied to this case implies that different sets of 

feasible solutions are associated with a particular value of alpha, 

i.e., those solutions with a degree of feasibility (the accomplish-

ment of the original conditions) equal or greater than alpha. Con-

sequently, with smaller values of alpha, some relaxed solutions 

are considered feasible. Then, instead of using the previous ex-

pression (2) now the expression (8) is used to obtain Spe: 

 Spe = {
1, D(cp

i , ce
j) ≤ d + H(1 − α)

0, D(cp
i , ce

j) > d + H(1 − α)
  (8) 

With this change, when α = 1 the problem remains crisp, and 

then students can only reach those bus stops that are at the maxi-

mum original walking distance, i.e., it is the most restrictive case. 

On the other hand, when α = 0, students are allowed to reach 

those bus stops that are at the maximum original distance plus the 

maximum tolerance, i.e., it is the greatest relaxation. 

3.4 Solution approach of the fuzzy SBRP model 

To illustrate the solution of the new fuzzy SBRP model, we use 

the parametric approach. In Fig. 2, a diagram gives a general 

picture of this approach, where a fuzzy problem (P~) is trans-

formed into a set of crisp problems (⋃ P∝∝ ), where each problem 

corresponds to a different value of alpha (∝). A solution is found 

for each of these crisp problems (S∝) and finally, the set of these 

solutions (⋃ S∝∝ ), each associated with each alpha value, forms 

the solution of the original fuzzy problem (S~).  
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Fig. 2. Descriptive diagram of the parametric approach [35]. The cycle starts 

in the upper left corner. 

To solve each crisp instance, any of the available solution 

methods for SBRP may be used. Here, we use the metaheuristic 

method presented in [34] to solve each crisp problem. This meth-

od consists of a metaheuristic that combines two heuristic algo-

rithms for the construction of the initial solution with a local 

search strategy that has a probabilistic-based selection mecha-

nism for mutation operators. 

The first heuristic is in charge of assigning each student to a 

bus stop, while the second is in charge of building the routes for 

each bus that start from the school and go through each stop 

where there is at least one assigned student, to finally go back to 

school. This last heuristic has a greedy approach. 

Four mutation operators are available for the selection mecha-

nism for local search: Swap, Two-opt, Section swap, and Reorder. 

In [34] this method was validated in the solution of the test in-

stances previously used in [31]. These previous results demon-

strate the efficacy of this metaheuristic approach that can reach 

the best-reported solutions in several instances and good solu-

tions in all cases. 

4. RESULTS AND DISCUSSION 

To validate the proposed fuzzy model for SBRP, as well as the 

algorithms used in its solution, 31 instances of problems were 

selected from the set studied in [34]. The characteristics of these 

instances can be seen in Table 1. In the case of the column Max-

imum Walking Distance for students, the unit for the values is 

“unit” in a Euclidean plain because the instances are artificial and 

a generic approach was applied. In a practical situation, each 

distance may be expressed in terms of meters or minutes. 

Following what was stated in [36], these instances can be 

grouped according to the number of bus stops, a key element of 

SBRP. Particularly, there are six instances with 5, 10, and 40 bus 

stops, eight instances with 20 bus stops, and five instances with 

80 bus stops. 

Taking into account that the instances in Table 1 are the origi-

nal crisp instances, each one induces an instance of the proposed 

fuzzy model. For the creation of these fuzzy instances, the toler-

ance was set to 20% of the original walking distance, i.e., H = 0.2 

* d. Following the parametric approach, five values of alpha 

allow different relaxation for each fuzzy instance, thus allowing 

different degrees of membership to the crisp case, α ∈ {0, 0.25, 

0.5, 0.75, and 1}. By combining these alpha values, the solution 

of the 31 fuzzy instances derived in the solution of 31 × 5 = 155 

crisp instances. 

TABLE 1 

CHARACTERISTICS OF THE 31 INSTANCES 

Id Instance 
Stops 

count 

Students 

count 

Maximum 

walking 

distance 

for students 

Capacity 

of the buses 

1 Inst6 5 25 20 50 

2 Inst9 5 50 5 25 

3 Inst11 5 50 10 25 

4 Inst15 5 50 40 25 

5 Inst21 5 100 20 25 

6 Inst24 5 100 40 50 

7 Inst27 10 50 10 25 

8 Inst32 10 50 40 50 

9 Inst33 10 100 5 25 

10 Inst37 10 100 20 25 

11 Inst40 10 100 40 50 

12 Inst42 10 200 5 50 

13 Inst54 20 100 20 50 

14 Inst55 20 100 40 25 

15 Inst56 20 100 40 50 

16 Inst57 20 200 5 25 

17 Inst60 20 200 10 50 

18 Inst64 20 200 40 50 

19 Inst70 20 400 20 50 

20 Inst72 20 400 40 50 

21 Inst78 40 200 20 50 

22 Inst79 40 200 40 25 

23 Inst80 40 200 40 50 

24 Inst84 40 400 10 50 

25 Inst90 40 800 5 50 

26 Inst95 40 800 40 25 

27 Inst97 80 400 5 25 

28 Inst99 80 400 10 25 

29 Inst102 80 400 20 50 

30 Inst108 80 800 10 50 

31 Inst112 80 800 40 50 

 

Table 2 shows the best solution value obtained for each in-

stance from 30 executions of the metaheuristics described in [34] 

with 10,000 evaluations of the objective function. Each row 

constitutes the fuzzy solution for each instance of the fuzzy prob-

lem. 

From these results, it can be observed that in 6 instances were 

obtained five different solutions, one for each level of relaxation 

or alpha-cut. In other instances, a reduced number of different 

solutions are obtained because some more relaxed cases do not 

imply an improvement in the objective function. From the point 

of view of a decision-maker, there is no rationale to allow a 

greater relaxation of a constraint if it does not imply an im-

provement in the cost. Thus, the solutions of interest are high-

lighted in bold in Table 2 because they are relevant to the deci-

sion-maker. For example, in Inst6, only two values are highlight-

ed in bold, alpha=1 and alpha=0. That means that with the other 

alpha-cuts (0.75, 0.5, 0.25), the solution is not better than the 

solution with alpha=1; thus, these solutions should not be taken 

into account. 
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TABLE 2 

RESULTS OBTAINED FOR THE 31 FUZZY INSTANCES 

Instance 
Alpha 

1 0.75 0.5 0.25 0 

Inst6 110.058 110.058 110.058 110.058 97.773 

Inst9 286.681 286.681 286.681 286.681 286.681 

Inst11 193.551 193.551 193.551 175.911 175.911 

Inst15 13.794 11.072 9.069 9.069 9.069 

Inst21 159.909 159.909 159.909 159.909 159.909 

Inst24 39.807 39.807 33.036 24.167 12.033 

Inst27 266.064 266.064 266.064 266.064 254.194 

Inst32 56.882 32.797 32.797 25.791 25.791 

Inst33 403.178 403.178 403.178 403.178 403.178 

Inst37 220.359 220.359 198.066 173.156 173.156 

Inst40 38.360 38.360 36.690 24.545 21.231 

Inst42 506.060 506.060 506.060 506.060 506.060 

Inst54 216.126 176.256 156.128 148.115 148.115 

Inst55 57.540 43.106 35.732 31.920 18.805 

Inst56 28.327 18.872 18.872 8.346 4.172 

Inst57 932.522 928.684 928.684 928.684 928.684 

Inst60 488.853 488.622 488.232 477.221 468.663 

Inst64 55.197 55.197 32.686 30.206 28.894 

Inst70 340.791 330.395 330.395 330.395 328.709 

Inst72 95.540 79.565 63.200 63.200 63.200 

Inst78 354.306 333.627 326.656 284.662 247.585 

Inst79 95.226 89.373 63.636 63.636 63.636 

Inst80 72.364 50.971 34.724 24.971 21.628 

Inst84 840.655 840.655 800.118 800.118 800.118 

Inst90 1376.405 1376.405 1376.405 1364.521 1364.521 

Inst95 418.702 404.616 393.256 393.256 393.256 

Inst97 1686.818 1686.818 1686.818 1686.818 1686.818 

Inst99 1401.222 1401.222 1354.376 1354.376 1300.822 

Inst102 566.535 513.113 474.049 439.875 427.293 

Inst108 1459.557 1393.490 1393.490 1393.490 1368.123 

Inst112 142.167 131.811 122.653 108.354 103.563 

Of the instances with five interesting solutions, instances 

Inst55 and Inst80 stand out because their greatest possible relaxa-

tion (α = 0) implies a cost reduction of almost 70%. Fig. 3 illus-

trates the interesting trade-off between cost (y-axis) and relaxa-

tion (alpha value in x-axis) of the fuzzy solution of the instance 

Inst80 with five solutions of interest. In this case, the solution 

value with alpha 0 was 21.6284, which represents a 0.3 fraction 

of the solution value with alpha 1, 72.3635. Therefore, 70% of 

cost reduction can be obtained in this instance when the maxi-

mum relaxation is used. 

In five of the instances, four solutions of interest were ob-

tained; in 9 instances, three possible solutions; and six instances 

offer two different solutions. On the other hand, only in five 

instances (Inst9, Inst21, Inst33, Inst42, Inst97), the relaxation 

does not contribute any improvement to the original solution, i.e., 

the most relaxed solution (α = 0) does not imply any improve-

ment. The fact that a better solution than the original one can't be 

found in these instances is mainly because the change in the 

constraints of the instance does not allow a significant change in 

the alternative stops that are available for each student.  

 

Fig. 3. Instance Inst80 solution in all membership values. 

 

Fig. 4. Saving ratios in the instances grouped by the number of bus stops. 

These results allow us to affirm that, by increasing the stu-

dents walking distance by at most 20%, considerable savings can 

be achieved in the total distance traveled by the routes and there-

fore in the fuel used. This implies that the proposed fuzzy model 

may be meaningful for a decision-maker. For example, in the 

fuzzy solution of the instance Inst80 presented in Fig. 3 it can be 

appreciated the possibility that at the cost of increasing the walk-

ing distance from 40 (α = 1, crisp) to 48 (α = 0, the most relaxed), 

a cost-saving of more than 70% is achieved. Other intermediate 

values of relaxation, values of α, and cost may also be interesting. 

Another analysis that can be made is to compare the archived 

results with solution values presented in [31]. In this comparison, 

the relaxation at any level brings a better solution in 18 instances. 

The average cost-saving in all instances is about 14%. On the 

other hand, if only the 18 instances with the best solutions are 

compared, the average cost-savings is around 25%. 

Fig. 4 shows a graph in which the average savings obtained in 

the instances can be observed according to the number of stops, 

based on the different values of α (0: the greatest relaxation; 1: no 

relaxation, i.e., the original problem). 

In Fig. 4, it can be seen that, on average, in all types of in-

stances, some savings between 4%, when the relaxation is the 

smallest one (alpha=0.75), and 35%, when the relaxation is the 

highest one (alpha=0), are achieved. In this way, the instances 

with 20 stops stand out because they allow saving almost 35% 

when the maximum relaxation is achieved. On the contrary, the 
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instances with 80 stops only allow savings of 10% with the max-

imum relaxation. According to this analysis, the relaxation of the 

walking distance seems to be less important when there are many 

stops due to the existence of multiple options in the same inter-

val. 

From another point of view, Fig. 5 shows a graph of the aver-

age proportional savings obtained for the different values of α in 

the instances, grouped by the maximum amount that a student 

can walk.  

 

Fig. 5. Saving ratios in the instances grouped by the maximum students 

walking distance. 

In this case, it can be seen how the greatest savings are 

achieved in the instances with the greatest walking distance (40), 

which is between 15% and 48% (greatest relaxation). On the 

other hand, it can be observed that in the instances with the short-

est walking distance (5), practical savings are not achieved. 

Likewise, the results can be analyzed, taking into account the 

number of students. In Fig. 6, the proportion of savings achieved 

for the different values of α is shown. In this case, the instances 

are grouped according to the number of students. Savings are 

achieved in all types of instances, the instances with 100 students 

being the ones with the most remarkable savings with values 

between 10% and 40% for the maximum relaxation. 

 

Fig. 6. Saving ratios in the instances are grouped by the number of students. 

In general, the results obtained in these instances indicate that 

intermediate values of the number of bus stops and students and 

large values of walking distances in the instances tend to allow a 

greater reduction in the cost. 

The proposed approach has the main advantage with respect 

to the solutions found in the literature. Our proposal allows the 

decision-makers to have more than one solution of interest to be 

considered; thus, they can evaluate different trade-offs between 

cost-savings and compliance with the original conditions. 

In addition, from the point of view of computational cost, the 

parametric approach can be applied in a very efficient way. The 

solution found without any relaxation can be used to search for 

the solution with the lower allowed relaxation, and then this new 

solution can be used as the starting solution for the next level of 

relaxation and so on.  

5. CONCLUSIONS 

This paper introduced a fuzzy model for the SBRP that allows 

modeling uncertainty for the constraint associated with the stu-

dent walking distance. The proposed model and its solution allow 

obtaining a fuzzy solution as a set of crisp solutions to the SBRP 

with interesting trade-offs between cost and accomplishment of 

the original maximum student's walking distance. A main contri-

bution of the proposal is the possibility of offering to the deci-

sion-maker the opportunity to analyze multiple solutions with 

different degrees of membership to the original conditions. Like-

wise, the results allow us to affirm that, at the cost of slightly 

increasing the student's walking distance; considerable savings 

can be achieved in the evaluation of the objective function. 

This research allows us to trace a way forward in the applica-

tion of fuzzy optimization in the SBRP concerning other aspects, 

e.g., the capacity of buses. Another interesting aspect is to study 

how to set the alpha values to obtain the most interesting trade-

offs between cost and relaxation. 
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