

Processing Natural Language Queries

via a Natural Language Interface to Databases

with Design Anomalies
Rodolfo A. Pazos, José A. Martínez, and Alan G. Aguirre

Abstract—Natural language interfaces to databases (NLIDBs)

have proven to be very promising tools when trying to obtain

information from a relational database since they require the end

user to have very little training and knowledge about databases

to use them. However, their development has not been easy due

to problems related to natural language processing. In addition

to this, most authors overlook an important factor in developing

these tools, which is the quality of the design of the database to

be queried by the NLIDB. The problem arises because there can

be many alternatives for the design of databases, and some

contain design anomalies. Many NLIDBs would not work

correctly for these databases since they were designed under the

assumption that they would be used with databases without

anomalies. This article describes an improvement to the

processing performed by a domain-independent interface to treat

databases with design anomalies and for the interface to be able

to correctly process queries involving such anomalies. The

literature on NLIDBs has not mentioned this problem and much

less addressed it.

Index Terms—Natural language interfaces, relational

databases, user interfaces

1. INTRODUCTION

OWADAYS, information plays a very important role in

business. Most of the information is, in many cases,

stored in databases. However, for a user to obtain information

from a database (DB), he must have knowledge of a query

language for databases (such as SQL).

Due to this situation, access to DBs by inexperienced users

is very limited. On many occasions, the information must be

accessed by inexperienced users; therefore, it is necessary that

they use easy-to-use software that does not require knowledge

about DBs. To this end, a large number of tools have been

developed, whose main characteristic is to show the DB

schema and offer methods for obtaining information based on

visual schemas. Although the mentioned tools allow building

SQL queries from visual schemas, they are not very easy to

use, as they require a certain degree of SQL knowledge.

NLIDBs are tools that allow inexperienced users to com-

pose SQL queries using a natural language (NL) expres-

sion [1]. These interfaces are very easy to use for inexperi-

enced users; however, their development has been delayed

due to problems related to natural language processing (NLP)

and the semantic content of DBs.

Nowadays, it is very common to find DBs that have design

anomalies [2][3][4]. This is because sometimes developers

include some anomalies in their DB designs to satisfy the

needs of the applications for which they were designed (e.g.,

surrogate keys). However, this affects the performance of

NLIDBs, since they are designed to work with correctly de-

signed DBs, i.e., DBs without design anomalies.

In summary, the problem addressed in this article consists

of developing a method that allows an NLIDB to be used for

querying DBs that have design anomalies and answering

correctly as if the DBs had no anomalies.

This paper describes methods for improving an NLIDB, al-

lowing it to process queries formulated on DBs that have

design anomalies. The anomalies dealt with are the following:

the absence of primary and foreign keys, use of surrogate

keys, use of columns for storing aggregate function calcula-

tions, and use of repeated columns in two or more tables.

Additionally, to demonstrate the efficiency of these methods,

we performed experimental tests of our NLIDB using DBs

with design anomalies. Additionally, to demonstrate the effi-

ciency of these methods, we performed experimental tests of

our NLIDB using DBs with design anomalies.

2. STATE OF THE ART

Several NLIDBs have been developed since the 1970s, such

as LUNAR [5], RENDEZVOUS [6], LADDER [7], among

others. These interfaces could also be configured to work with

other DBs despite having been designed for a DB in particu-

lar; however, this task was very difficult due to technical limi-

tations at the time.

In [8] some NLIDBs are considered relevant to this work.

It is important to remark that for most NLIDBs, there is no

software that can be used for testing. These NLIDBs are rele-

vant for two reasons: First, there is a prototype (C-Phrase) or

commercial software (ELF) of the NLIDB, which can be

tested and, thus, demonstrate if they have any mechanism to

treat design anomalies. Second, the other NLIDBs have been

recently developed.

Manuscript received on October 12, 2020, accepted for publication on No-

vember 14, 2020, published on December 30, 2020.

The author is with the Instituto Tecnológico de Cd. Madero, Tecnológico

Nacional de México, Cd. Madero, Tamaulipas 89440, Mexico (e-mail:

r_pazos_r@yahoo.com, jose.mtz@gmail.com, li.aguirre.lam@hotmail.com).

N

43 POLIBITS, vol. 62, 2020, pp. 43–50https://doi.org/10.17562/PB-62-5

IS
S

N
 2395-8618

TABLE 1

STATE OF THE ART NLIDBS

NLIDB Year
Design Anomaly

Treatment

NADAQ 2019 No

Cross-domain NLI 2019 No

TEMPLAR 2019 No

nQuery 2017 No

Aneesah 2015 No

NL2CM 2015 No

NaLIR 2014 No

NLWIDB 2013 No

C-Phrase 2010 Partially

ELF 2004 Partially

Fig. 1. NLIDB architecture.

In this article, the criteria mentioned are used to choose the

relevant NLIDBs for the state of the art.

It is worth mentioning that there are also software tools for

design and analysis of DBs. Some examples of these are Visu-

al Paradigm, Vertabelo, DbSchema, Toad Data Modeler,

among others.

The aforementioned tools, in addition to allowing users to

easily design DBs from entity-relationship diagrams, also

have analysis tools on the structure of the designed DB. How-

ever, most of the analysis and error correction tools that these

software tools have been for correcting errors related to dirty

DBs.

Additionally, the design anomalies considered in this arti-

cle require semantic information that only the user can pro-

vide. Unfortunately, none of the mentioned software considers

this kind of problem.

Although no work mentioned so far has addressed the

problem of design anomalies in DBs, the only readily availa-

ble interfaces that can be used for testing are included in this

analysis of the state of the art (Table 1), such as C-PHRASE

[9] and ELF [10]. Others that have been recently developed

are also included, such as NADAQ [11], Cross-domain

NLI [12], TEMPLAR [13], nQuery [14], Aneesah [15],

NL2CM [16], NaLIR [17], NLWIDB [18]. In the former, the

performance they have with DBs with design anomalies is

evaluated.

It is important to mention that in this analysis, domain-

specific NLIDBs are omitted since they are designed to work

with the design anomalies of the DB for which they were

designed.

Both the more recently developed NLIDBs and commer-

cial NLIDBs have not considered design anomalies in DBs as

a problem that must be solved in order to correctly translate

NL queries to SQL queries. Therefore, it cannot be guaranteed

that the operation of most of the NLIDBs listed will be correct

when using DBs with design anomalies.

3. OUR NLIDB

The NLIDB used in this work is a domain independent proto-

type interface for the Spanish language [19].

A crucial component of this interface is the Semantic In-

formation Dictionary (SID), shown in Figure 1. The SID is a

DB that stores metadata of the DB in use (DB schema, col-

umns, tables) and useful semantic information (nominal, ver-

bal and prepositional descriptors, among others) to relate the

query in NL to the elements of the SQL statement that the

interface needs to build.

In addition to the SID, this interface consists of two main

processes: the customization process and the translation pro-

cess shown in Figure 1.

The customization process is carried out by the DB admin-

istrator (DBA), where the DBA configures the SID by enter-

ing semantic information regarding the tables, columns and

relationships that exist in the schema of the DB in use.

The process of translating a query consists of three sub-

processes: lexical analysis, syntactic analysis and semantic

analysis (Figure 2).

Each sub-process is carried out by functional layers, where

each layer deals with a problem that must be solved so that the

interface can obtain a correct transla-tion of the NL query.

Lexical analysis. It performs a lexical tagging process, ob-

taining the syntactic category (part of speech) of each word in

the query from a lexicon stored in a DB. In this layer, lexical

errors are corrected, syntactic ambiguity and homography

problems are resolved. The result obtained consists of a

tagged query.

Syntactic analysis. The tagged query is used to build a syn-

tactic tree, where syntactic errors are corrected, syntactic

ellipsis is resolved, and anaphora problems are detected.

44POLIBITS, vol. 62, 2020, pp. 43–50 https://doi.org/10.17562/PB-62-5

Rodolfo A. Pazos, José A. Martínez, Alan G. Aguirre
IS

S
N

 2395-8618

Semantic analysis. A representation of the meaning of the

tagged query is constructed, which can be used to translate it

into SQL. This layer is the most complex since most of the

problems are due to the interpretation of the meaning of the

query. This layer is divided into the following sub-layers:

1. Treatment of polysemy and homography.

2. Anaphora treatment.

3. Treatment of imprecise values and aliases.

4. Identification of tables and columns.

5. Identification of Select and Where phrases.

6. Treatment of negative queries.

7. Treatment of temporary and deductive problems.

8. Treatment of aggregation and grouping functions.

9. Resolution of semantic ellipsis.

10. Determination of implicit joins.

It is important to mention that, currently, only the most

necessary layers (with a checkmark ) have been implement-

ed (Figure 2).

Useful information is collected when processing the NL

query via the functional layers. With this information, the

NLIDB constructs a SQL query whose result contains the

information requested by the user.

4. PROCESSING NL QUERIES FORMULATED IN DBS WITH

DESIGN ANOMALIES

The NLIDB [19] is designed on the assumption that the DB in

use has no design anomalies; therefore, it does not perform

well when translating queries to DBs with this problem.

Four design anomalies are considered in this article:

1. Absence of primary and foreign keys.

2. Use of surrogate keys.

3. Columns for storing aggregate function (AF) calcula-

tions.

4. Repeated columns in two or more tables.

Before the end user can use the NLIDB to answer queries,

an initial setup process must be performed. This process is

carried out semi-automatically by the NLIDB with the help of

the DBA. In principle, the DBA must choose the DB with

which he will work, and the NLIDB obtains the metadata

from the DB and uses it to configure the SID. It is important

to mention that the metadata obtained includes the design

anomalies contained in the DB; therefore, the SID configura-

tion has a representation of the DB with design anomalies.

4.1 Queries that Involve Absence of Primary and Foreign

Keys

The absence of foreign keys directly affects the performance

of the NLIDB. This is because the NLIDB, by means of the

foreign keys defined in the DB schema, saves in the SID the

existing relationships between the tables that have foreign

keys defined and the tables to which they refer. This process is

used in the sublayer Determination of Implicit Joins, where a

semantic graph is created to determine the joins between ta-

bles when two or more tables are involved in the query.

Without the foreign keys properly defined in the DB, the

NLIDB constructs a semantic graph where some tables are not

connected as they should be. Additionally, the NLIDB is not

Fig. 2. Functionality layers of the translation module.

45 POLIBITS, vol. 62, 2020, pp. 43–50https://doi.org/10.17562/PB-62-5

Processing Natural Language Queries via a Natural Language Interface to Databases with Design Anomalies
IS

S
N

 2395-8618

able to deduce the existing relationships between tables and,

therefore, it is not able to build a SQL query with the joins

required by the NL query.

To solve the aforementioned problem, a configuration

module was implemented that allows the DB administrator to

specify relationships between tables whose foreign keys are

not defined in the DB. In this way, the NLIDB can use these

relationships to build a semantic graph, which contains

enough information to define the joins in the SQL query in

case they are required.

For example, consider the following NL query for the Ge-

obase DB [20]:

¿Qué ríos pasan por el estado de Alaska?

Which rivers run through the state of Alaska?

Assuming that the DB does not have foreign keys defined,

the SQL query built by the NLIDB would be the following:

1: SELECT river.river_name FROM river, state

2: WHERE state.state_name LIKE ‘Alaska’;

As can be seen, the NLIDB only detects the tables directly

involved in the query; however, there is an intermediate table

(riverstate), which is not included in the query. Furthermore,

relationships between tables are not defined in the SID; there-

fore, the NLIDB does not com-pose the joins between them.

Once the relationships between tables have been defined in

the SID using the configuration module, the following query

is obtained in SQL, which contains the intermediate tables and

joins necessary in the query:

1: SELECT river.river_name

2: FROM river, state, riverstate

3: WHERE state.state_name LIKE ‘Alaska’

4: AND state.abbreviation = riverstate.state_abbreviation

5: AND riverstate.river_id = river.river_id;

4.2 Queries that Involve Surrogate Keys

The use of surrogate keys affects the performance of the

NLIDB, because this anomaly can cause data redundancy and

lack of relationships between tables. Data redundancy affects

the results obtained by the NLIDB. In these cases, some of the

rows returned by the NLIDB can be confusing for the end

user. The lack of relationships affects the creation of joins in

the SQL query and, therefore, the result.

To solve this problem, a configuration interface for the SID

was developed to define surrogate keys and relationships

through foreign keys between the tables that have a surrogate

key and other base tables in the SID [21]. Additionally, an

algorithm was implemented to improve the processing of the

interface so that it may be able to use the relationships defined

by the configuration interface and ignore the relationships

defined in the DB schema related to surrogate keys.

For example, consider the NL query:

¿En cuál estado se encuentra el lago Ontario?

In which state is Lake Ontario?

Fig. 3. Geobase DB fragment with a surrogate key.

The tables involved in the query are State, LakeState, and

Lake. In Figure 3 a fragment of the DB schema with the de-

sign anomaly is presented, where Lake.lake_id is a surrogate

key, LakeState.lake_id is a foreign key that connects with the

surrogate key, and there could be a natural relationship be-

tween Lake.lake_name and LakeState.lake_name. However,

due to the use of the surrogate key, no such relationship was

defined in the DB schema.

The surrogate key Lake.lake_id and the foreign key

(LakeState.lake_name REFERENCES Lake.lake_name) are

defined in the SID by means of the configuration module.

When defining the foreign key, the NLIDB marks the foreign

key related to the surrogate key (LakeState.lake_id REFER-

ENCES Lake.lake_id) as null so that it is ignored in the NL

query translation process.

Processing the query using the NLIDB without treat-ing

the design anomaly would result in the following SQL query:

1: SELECT State.state_name

2: FROM State, LakeState, Lake

3: WHERE Lake.lake_name LIKE ‘Ontario’

4: AND State.abbreviation=LakeState.state_abbreviation

5: AND LakeState.lake_id = Lake.lake_id;

While the query obtained when treating the design anoma-

ly through the configuration interface is as fol-lows:

1: SELECT State.state_name

2: FROM State, LakeState, Lake

3: WHERE Lake.lake_name LIKE ‘Ontario’

4: AND State.abbreviation = LakeState.state_abbreviation

5: AND LakeState.lake_name = Lake.lake_name;

The first query includes joins and the surrogate key, while

the second query includes a natural join using the columns

LakeState.lake_name and Lake.lake_name.

4.3 Queries that Involve Columns for Storing Aggregate

Function Calculations

The columns that can be calculated with AFs cause the

NLIDB to obtain erroneous results since the values ob-tained

can also be calculated by means of an AF applied to a column

of another table.

46POLIBITS, vol. 62, 2020, pp. 43–50 https://doi.org/10.17562/PB-62-5

Rodolfo A. Pazos, José A. Martínez, Alan G. Aguirre
IS

S
N

 2395-8618

For example, consider the following NL query:

¿Cuál es la población del estado de Mississippi?

What is the population of the state of Mississippi?

The population of a state could be calculated in two ways:

using the column State.population or by adding the popula-

tions of the cities of the state. The DBA must decide whether

to use the anomalous column or to use an AF instead.

For this reason, a configuration module was devel-oped

that allows the DBA to define the columns that can be calcu-

lated with AF in the SID and assign them an AF associated

with a column so that it can be used instead of the anomalous

column.

An algorithm that modifies the internal functioning of the

NLIDB in such a way that it can use the AFs associ-ated with

this type of columns was also developed.

Algorithm 1 shows the pseudocode that describes the pro-

cessing of columns for storing AF calculations. In the pseudo-

code, Q is the NL query entered by the user, Qi is a token

(word of NL query) of query Q, n is the total number of to-

kens in Q, and AFColVal is a variable used to store the final

label that the referred token will be assigned. In line 3, for

each token of query Q, it is verified if the column to which the

token Qi refers to is a column that stores an AF calculation. In

this case, in line 4, an expression (character string) is stored in

AFColVal. The expression consists of the AF (avg, count, etc.)

stored in the SID for the mentioned column and the name of

the column to which the AF will be applied. Lastly, the final

label of token Qi is updated with the information from

AFColVal.

Regarding the example, when processing the NL query

without treating the design anomaly, the NLIDB builds a

query in SQL with the column State.population in the Select

clause as follows:

1: SELECT State.population

2: FROM State

3: WHERE State.name LIKE ‘Mississippi’;

On the other hand, by defining the column State.population

as a column that stores AF calculations in the SID and assign-

ing the AF SUM(City.population) instead, the NLIDB will

detect that there are two tables involved in the query: City in

the Select clause and State in the Where clause; therefore, a

query will be generated with their respective join:

1: SELECT SUM(City.population)

2: FROM State, City

3: WHERE State.name LIKE ‘Mississippi’ AND

4: State.abbreviation = City.state_abbreviation;

It is important to mention that the DBA can configure the

NLIDB for using the column with the design anomaly or

using the AF in query processing.

4.4 Queries that Involve Repeated Columns in Two or More

Tables

The presence of repeated columns in multiple tables is an

anomaly that creates conflict in the NLIDB processing when

deciding to choose the right column from the DB that has

several occurrences in different tables.

The SID contains information to match the words of an NL

query with the columns of a DB. However, when in a DB

there are two or more tables with repeated columns, the

NLIDB is not able to know which is the right column that

contains the information referred to by the user. Most of the

time, columns that suffer from this problem can contain incor-

rect information due to insertion errors. Therefore, when the

NLIDB refers to such information, it will be erroneous.

To solve the problems related to this anomaly, the DBA

must identify the column that contains the correct information

(usually a column that corresponds to an attribute of a strong

entity). Afterwards, the DBA must indicate the columns that

are repeated through the con-figuration module implemented

for this purpose. Once this is done, the SID will have the

necessary information to carry out the processing of queries

that involve this type of columns.

In addition to the above, an algorithm was developed to al-

low the NLIDB to identify these columns and, thus, be able to

correctly process queries.

In line 3 of Algorithm 2, for each token in query Q, the to-

kens that refer to a column are identified (the meanings of Q,

Qi and n are the same as those for Algorithm1). Subsequently,

in lines 4 and 5, the columns repCols that are repeated in the

DB with their respective labels repColsTags (the columns

with the most reliable information) are obtained. This column

information is obtained from the SID. In lines 6 to 10 a verifi-

cation is carried out to identify the token that refers to a re-

peated column; in case of identifying one, in line 8 the token

is labeled with the correct column.

Fig. 4. Algorithm 1.

47 POLIBITS, vol. 62, 2020, pp. 43–50https://doi.org/10.17562/PB-62-5

Processing Natural Language Queries via a Natural Language Interface to Databases with Design Anomalies
IS

S
N

 2395-8618

Fig. 5. Algorithm 2.

To exemplify the operation of the mentioned pseudocode,

consider the query:

¿Qué montañas están en el estado de Alaska?

Which mountains are in the state of Alaska?

When processing the previous query by the NLIDB, it de-

tects the Mountain.mountain_name column for the Select

clause and the Mountain.state_name column for the Where

clause with its search value Alaska. The state_name column is

found in 5 tables of the DB (City, State, Mountain, High-Low,

Border). However, the column that has the most reliable in-

formation is State.state_name, and the other columns contain

duplicate and unreliable information. When running Algo-

rithm 2, the NLIDB avoids the use of the Moun-

tain.state_name column as it does not contain reliable infor-

mation and uses the State.state_name column instead. Once

this is done, the NLIDB proceeds to identify the implicit joins

between tables, and finally obtains the following SQL query:

1: SELECT Mountain.mountain_name

2: FROM State, Mountain

3: WHERE State.state_name LIKE ‘Mississippi’ AND

 State.abbreviation = Mountain.state_abbreviation;

5. EXPERIMENTAL RESULTS

In the experimental tests, a comparison of our NLIDB and the

ELF NLIDB was made [10]. The ATIS [20] and

Geoquery880 [20] corpora were used for the tests. For each

design anomaly, five queries from the ATIS corpus and five

queries from the Geoquery corpus were selected, giving a

total of 40 queries. Each of the test cases has the following

characteristics: it considers an NL query that involves a frag-

ment of the DB, a design anomaly (created or existing) was

considered in any of the tables involved in the query, and the

SQL query resulting from NLIDB processing without/with

anomaly treatment.

It is important to mention that for the purposes of this pro-

ject, some queries of the two aforementioned corpora were

modified since to perform tests on some design anomalies,

columns that did not exist in the tables had to be introduced to

simulate the design anomalies.

Table 2 shows the results of the comparative tests de-

scribed. Our NLIDB correctly answers 20 queries from the

ATIS corpus and 20 queries from the Geobase corpus. This is

due to the handling of design anomalies since, without this

mechanism, the NLIDB would not answer any query correct-

ly.

To test the absence of foreign keys, they were removed

from the DB and from the SID. To carry out the test with ELF,

only foreign keys were eliminated from the DB schema, and

an express configuration was used. ELF was not able to cor-

rectly answer any of these queries because, when configured,

it uses the foreign keys defined in the DB schema to store

them in its dictionary and, thus, to be able to build the re-

quired joins in the SQL queries. However, as the DB schema

does not have foreign keys defined, it is not possible for ELF

to define the necessary joins. Furthermore, ELF does not offer

a tool to specify foreign keys in a DB without modifying the

structure of its schema.

In the test for the use of surrogate keys, some columns with

identifiers were included to simulate surrogate keys, and for-

eign keys were created with other tables referring to the de-

fined surrogate key. For testing our NLIDB, DBs with the

appropriate characteristics were created, and the SID was

configured to include the surrogate keys, as well as their rela-

tionships with other tables. For ELF, only the DB schema was

modified, and an express configuration was used. In this type

of query, our NLIDB correctly answered because, through the

configuration module for design anomalies, the surrogate keys

were defined, and the existing relationships were modified

using natural foreign keys. In contrast, ELF was unable to

answer correctly, as it was repeatedly unable to interpret the

TABLE 2
EXPERIMENTAL TESTS RESULTS

Design Anomaly
Our NLIDB ELF

ATIS Geobase ATIS Geobase

Abs. of PKs and FKs 5 5 0 0

Use of Surrogate keys 5 5 0 0

Columns for storing AF calculations 5 5 0 2

Repeated columns 5 5 1 1

Total 20 20 1 3

48POLIBITS, vol. 62, 2020, pp. 43–50 https://doi.org/10.17562/PB-62-5

Rodolfo A. Pazos, José A. Martínez, Alan G. Aguirre
IS

S
N

 2395-8618

NL query. Other times it misinterprets the query by including

Boolean values in queries about flight fares.

Concerning columns used for storing AF calculations, in

our NLIDB the test was carried out by creating columns with

this characteristic in the DB and additionally specifying these

columns in the SID. Subsequently, this anomaly was treated

using the configuration module for design anomalies, and

finally, the NLIDB used the processing algorithm to detect

and process these columns with anomalies. Regarding ELF,

the columns with the anomaly were also defined in the DB

schema. However, for ATIS DB queries, ELF built erroneous

queries be-cause it used tables and columns that were not

required in the query, and it also ignored the use of AFs to

process the queries. For Geobase queries, ELF was able to

correctly answer two queries, as the structure of these queries

was easier to understand, and the Geobase schema is much

smaller than that of ATIS. Due to the above, ELF was able in

these two cases to ignore the column used to store AF calcula-

tions and apply the necessary AF.

A test for the use of repeated columns in multiple tables

was carried out in our NLIDB by repeating columns that are

not foreign keys in different tables and whose information is

already defined in another column of another table. In this

test, the NLIDB had no problem when using the columns with

the most reliable information because, when it found a repeat-

ed column, it was already defined in the SID, and the column

with the most reliable information was associated with it. On

the other hand, ELF obtained a correct query from the ATIS

corpus and a correct query from the Geobase corpus. The

main reason why ELF got only two successful queries with

this type of anomaly is that, when it finds the repeated column

in a table closest to the column associated with a search value,

it always uses this column; otherwise, ELF can ignore it and

build the query using the column that has the most reliable

information.

6. CONCLUSIONS AND DISCUSSION

There are many NLIDBs. Most of these tools use ap-

proaches that aim to solve only the problems related to NL

processing, leaving aside the problems inherent to the struc-

ture of the DB in use. One of the most important aspects of

using a DB in an NLIDB is its design. On many occasions,

this design may have anomalies; therefore, most NLIDBs

would not work properly with a large number of DBs that

suffer from this problem.

In this work, a mechanism to treat design anomalies in DBs

was presented, which was implemented in a do-main-

independent NLIDB [19]. To treat these design anomalies, a

configuration module was implemented to introduce infor-

mation about the anomalies of a DB in the SID. In this way, it

is possible to present to the NLIDB a representation of the DB

without design anomalies so that it works correctly. The above

is important since a tool of this type should not modify the

schema of the DB in use since it is often used by various ap-

plications, which would also have to be modified. Conse-

quently, algorithms were implemented to process queries

involving DB fragments that have design anomalies. These

algorithms, in conjunction with additional information on the

anomalies contained in the SID, allow the NLIDB to work

with a DB with design anomalies as if it were a DB without

anomalies.

The absence of foreign keys affects only the creation of

joins when processing queries with this anomaly. However, if

an NLIDB has no way of specifying relationships without

modifying the DB schema, it is very difficult for it to be able

to correctly construct SQL queries.

In the tests presented in Section 5, ELF is able to correctly

construct only four queries, of which three were from Geo-

base and one from ATIS. Of these queries, two involved col-

umns for storing AF calculations. This was possible because

ELF ignored the use of columns that had this anomaly. How-

ever, for anomalies that required more specific processing,

such as missing foreign keys and the use of surrogate primary

keys, ELF could not answer any queries correctly.

Two more anomalies have been detected in the literature on

NLIDBs: the absence of the second normal form of some DB

table and the absence of the third normal form. A method for

dealing with these two anomalies will be developed in the

near future.

ACKNOWLEDGMENT

PhD student Alan Gabriel Aguirre Lam acknowledges the

scholarship (Grantee No. 510415) by the Consejo Nacional de

Ciencia y Tecnología, Mexico.

REFERENCES

[1] I. Androutsopoulos, G. Ritchie, and P. Thanisch, “Natural Language Interface to

Databases: An Introduction,” Natural Language Engineering, vol. 1, no. 1, pp. 29–

81, 1995.

[2] O. Pivert and H. Prade, “Handling Dirty Databases: From User Warning to Data

Cleaning Towards an Interactive Approach,” Proc. Fourth International Confer-

ence on Scalable Uncertainty Management, France, 2010.

[3] M.L. Pedro-de-Jesus and P.M.A. Sousa, “Selection of Reverse Engineering

Methods for Relational Databases,” Proc. European Conference on Software

Maintenance and Reengineering, IEEE, 1999.

[4] N. Mfourga, “Extracting Entity-Relationship Schemas from Relational Databases:

A Form-Driven Approach,” Proc. Fourth Working Conference on Reverse Engi-

neering, IEEE, 1997.

[5] W. Woods, R. Kaplan and B. Nash-Webber, “The Lunar Sciences Natural Lan-

guage Information System: Final Report,” BBN Report 2378, Bolt Beranek and

Newman Inc., 1972.

[6] E.F. Codd, “Seven Steps to Rendezvous with the Casual User,” Proc. IFIP Work-

ing Conference Data Base Management, pp. 179–200, 1974.

[7] G. Hendrix, E. Sacerdoti, D. Sagalowicz, and J. S. Locum, “Developing a Natural

Language Interface to Complex Data,” ACM Transactions on Database Systems,

vol. 3, no. 2, pp. 105–147, 1978.

[8] R.A. Pazos, J.A. Martínez, A.G. Aguirre, and M.A. Aguirre, “Issues in Querying

Databases with Design Anomalies Using Natural Language Interfaces,” Fuzzy

Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects

and Real Applications, Studies in Computational Intelligence, vol. 749, pp. 461–

473, 2018.

[9] M. Minock, “C-phrase: A system for Building Robust Natural Language Interfac-

es to Databases,” Data Knowl. Eng., vol. 69, no. 3 290–302, 2010.

[10] S. Conlon, J. Conlon, and T. James, “The Economics of Natural Language Inter-

49 POLIBITS, vol. 62, 2020, pp. 43–50https://doi.org/10.17562/PB-62-5

Processing Natural Language Queries via a Natural Language Interface to Databases with Design Anomalies
IS

S
N

 2395-8618

faces: Natural Language Processing Technology as a Scarce Resource,” Decis.

Support Syst., vol. 38, no. 1, pp. 141–159, 2004.

[11] X. Boyan, C. Ruichu, Z. Zhenjie, Y. Xiaoyan, H. Zhifeng, L. Zijian, and L.

Zhihao, “NADAQ: Natural Language Database Querying Based on Deep Learn-

ing,” IEEE Access, vol. 7, pp. 35012–35017, 2019.

[12] W. Wang, “A Cross-Domain Natural Language Interface to Databases Using

Adversarial Text Method,” Proc. VLDB 2019 PhD Workshop, 2019.

[13] C. Baik, H.V. Jagadish, and Y. Li, “Bridging the Semantic Gap with SQL Query

Logs in Natural Language Interfaces to Databases,” Proc. IEEE International Con-

ference on Data Engineering (ICDE), 2019.

[14] N. Sukthankar, S. Maharnawar, P. Deshmukh, Y. Haribhakta, and V. Kamble,

“nQuery - A Natural Language Statement to SQL Query Generator,” Proc. 55th

Annual Meeting of the Association for Computational Linguistics Student Re-

search Workshop, pp. 17–23, 2017.

[15] J. D. O’Shea, K. Shabaz, and K.A. Crockett, “Aneesah: A Conversational Natural

Language Interface to Databases,” Proc. World Congress on Engineering 2015,

vol. 1, 2015.

[16] Y. Amsterdamer, A. Kukliansky, and T. Milo, “A Natural Language Interface for

Querying General and Individual Knowledge,” in Proc. VLDB Endow., 2015.

[17] F. Li and H.V. Jagadish, “Constructing an Interactive Natural Language Interface

for Relational Databases,” Proc. VLDB Endow., 2014.

[18] R. Alexander, P. Ruksha, and S. Mahesan, “Natural Language Web Interface for

Database (NLWIDB),” Proc. Third International Symposium, SEUSL, Sri Lanka,

2013.

[19] R.A. Pazos R., M.A. Aguirre, J.J. González B., J.A. Martínez, J. Pérez, and A.A.

Verástegui, “Comparative Study on the Customization of Natural Language Inter-

faces to Databases,” SpringerPlus vol. 5, 553, 2016.

[20] Geobase880 Query corpus, https://www.cs.utexas.edu/users/ml/ nlda-

ta/geoquery.html, 2020.

[21] G. Sidorov, R.A. Pazos, J.A. Martínez, J.M. Carpio, and A.G. Aguirre, “Configu-

ration Module for Treating Design Anomalies in Databases for a Natural Lan-

guage Interface to Databases,” Intuitionistic and Type-2 Fuzzy Logic Enhance-

ments in Neural and Optimization Algorithms: Theory and Applications, vol. 862,

Springer, 2020.

50POLIBITS, vol. 62, 2020, pp. 43–50 https://doi.org/10.17562/PB-62-5

Rodolfo A. Pazos, José A. Martínez, Alan G. Aguirre
IS

S
N

 2395-8618

