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Abstract—Project Portfolio Selection (PPS) is a major strategic 

decision problem faced by any organization. PPS decides how to 

invest resources into projects subject to a decision process 

influenced by multiple conflicting criteria. The portfolio’s 

compromise to the organization’s well-being has an uncertainty 

that directly affects a decision maker’s preferences (DM). 

MOEA/D is a well-known approach to tackle multicriteria 

optimization problems, and it is still open for the development of 

strategies to handle uncertainty on its search process. This work 

proposes I-MOEA/D, a new method based on a MOEA/D 

approach, to deal with DM’s uncertainty in costs and benefits of 

portfolios’ projects. The proposed novel features include (a) 

handling large numbers of objectives; (b) a method to generate 

the initial population; and (c) handling the uncertainty of 

resources, costs, and benefits through intervals. An experiment 

compared I-MOEA/D against the state-of-the-art I-NSGA-II 

algorithm in instances with two to fifteen objectives. Results 

demonstrate the competitiveness of I-MOEA/D by improving the 

quality of solution of I-NSGA-II in most instances. 

Index Terms—Decision making, uncertainty, multi-objective 

optimization, mathematics of intervals, project portfolio 

problem. 

1. INTRODUCTION 

RGANIZATIONS usually address Project Portfolio 

Selection (PPS) aided by a decision-maker (DM). The 

DM and the decision analyst often must provide information 

on portfolio values; however, such information might be in-

complete, causing a condition of uncertainty. The PPS has 

distinct solutions in state-of-the-art works; however, there is 

still a lack of research that handles uncertainty in the PPS, 

even fewer using intervals [1][2][3]. An interval is a range 

used to represent unclear projects’ values defined for organi-

zational resources, e.g., benefits, costs, requirements, times, 

synergies, partial support, among others. 

The DM is responsible for selecting the portfolio that best 

meets the organizational objectives. However, to carry out this 

activity, he or she faces difficulties in solving the PPS due to: 

the exponential complexity of the optimization problem, the 

number of involved objectives, the lack of information about 

the exact contribution of the projects to the portfolio, and the 

imprecise knowledge of the requirements or resources needed 

to complete the projects and their availability. The improper 

modeling of the previous difficulties can lead to portfolios that 

can affect the institutions’ interests. 

Carazo [4] defines a project as a temporary, unique, and 

unrepeatable process that pursues a specific set of objectives, 

which, when combined, will impact the vi-sion and mission of 

the organizations. A portfolio is a set of projects that, carried 

out in a given period, share a series of resources, among 

which there may be rela-tionships of complementarity, in-

compatibility, and synergies produced by sharing costs and 

benefits derived from the implementation of more than one 

project at a time [5].  

The proper selection of projects for a portfolio can ben-efit 

any organization based on the DM’s objectives. Therefore, a 

portfolio decision analysis can help the DMs select a subset of 

an extensive set of projects through modeling, considering 

relevant constraints, preferences, and inaccuracies in the in-

formation [6]. 

Currently, some state-of-the-art strategies to tackle with 

PPS and uncertainty are: fuzzy sets [7][8][9][10][11][12][13], 

interval analysis [14][15][16][17][18] and probability distri-

butions [19]. Some authors have also introduced modifica-

tions in the portfolio to minimize uncertainty and model the 

DM attitude to risk [20] [21][22].  

This paper proposes the analysis of an algorithm based on 

intervals as the solution to PPS under uncer-tainty. The ap-

proach uses an MOEA family algorithm (Multi-Objective 

Evolutionary Algorithms) that solves problems with many 

objectives and of interest to the scientific community. Specifi-

cally, we worked with the MOEA/D (Multi-Objective Evolu-

tionary Algorithm based on Decomposition) algorithm. The 

proposed MOEA/D, denoted I-MOEA/D for Interval Multi-

Objective Evolutionary Algorithm based on Decomposition, 

includes novel features as intervals to manage uncertainty and 

adequate handling of many-objective optimization problems. 

A developed experi-ment shows the performance of I-

MOEA/D against I-NSGA-II, an algorithm from the scientific 
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literature ba-sed on NSGA-II (Non-Dominated Sorting Genet-

ic Algo-rithm II) that also handles uncertainty [10]. 

This document is structured as follows: Section 2 pro-vides 

some background on Multi-Objective PPS; also, it presents 

the proposed I-MOEA/D, initialization fun-ction, and random 

instance generator. Section 3 descri-bes the experiment con-

ducted to validate I-MOEA/D and the results; besides, it pro-

vides the analysis that demonstrates the proposed strategy’s 

advantages. Fina-lly, Section 4 summarizes the main conclu-

sions drawn from the research. 

2. PROPOSED SOLUTION 

2.1 Multi-objective Project Portfolio Selection 

Until today, Multi-objective Project Portfolio Selection (or 

just PPS) has distinct approaches that solve it [4] [5]. A solu-

tion is a portfolio composed of one or more projects. A project 

is a series of activities related to each other to reach a specific 

objective, which consumes resources. A formal definition of 

PPS with uncertainty (UPPS) is the following. 

Let the binary vector 𝑥⃗ = 〈𝑥1, 𝑥2, … ,  𝑥𝑝〉 of size p be a portfo-

lio, where p is the available projects, 𝑥𝑖 = 1 or 𝑥𝑖 = 0 repre-

sents whether or not a project i is in the portfolio, respectively.  

Let 𝑐 (𝑥⃗)  and f (𝑥⃗) = {f1 (𝑥⃗), f2 (𝑥⃗), …, fm (𝑥⃗)} be the portfolio cost 

and fitness. Let B be the budget available to form the portfo-

lio. Finally, let A= {A1, A2, …, Aa} and R= {R1, R2, …, Rr} bounds 

over specific areas and regions of interest that must be satis-

fied by the portfolio. If c(.)=[𝑐, 𝑐], f(.)=[𝑓, 𝑓], B=[𝐵, 𝐵], 

Ai=[𝐴, 𝐴], and Ri=[𝑅, 𝑅] are intervals defined by a lower 𝑙 and 

upper 𝑢 bounds then equations 1 and 2 formalize the defini-

tion of UPPS.  

 

max𝑓(𝑥⃗) = {𝑓1(𝑥⃗), 𝑓2(𝑥⃗), … , 𝑓𝑛(𝑥⃗)} (1) 

Subject to:   𝑐(𝑥⃗) ≤ 𝐵 

𝐴𝑖 ≤ 𝐴𝑖(𝑥⃗) ≤ 𝐴𝑖 

𝑅𝑖 ≤ 𝑅𝑖(𝑥⃗) ≤ 𝑅𝑖 

𝑥⃗ ∈ {0,1}𝑛 

(2) 

 

where the basic arithmetic and relational operations follow 

previously defined computations (cf., [15, 20]), e.g. 𝑓𝑖(𝑥⃗), 
𝑐(𝑥⃗), 𝐴(𝑥⃗), and 𝑅(𝑥⃗) are product of a linear combination of 

the contribution of each project i in the portfolio in fitness, 

cost, area, or region, respectively. 

 

2.2 Generate Initial Population with Exchange 

This section describes the initialization strategy for the popu-

lation of I-MOEA/D, in the presence of intervals. The process 

is simple; it chooses a project i as part of the portfolio when-

ever a random uniform value v lies under a predefined selec-

tion threshold selection,  (set to 0.5 for this research work). 

Following a trial-and-error ap-proach, the algorithm discards 

those solutions that be-came infeasible in the process. Algo-

rithm 1 shows the pseudocode of the method. 

Algorithm 1. Generation of Initial Population 

Input:  

 -Threshold selection 

 m-Objectives number 

 p-Total projects 

 a-Number of areas 

 r-Number of regions 

Output: 

 Initial population 

0.   𝑥⃗= {1, 1, …,1} 

1.  while (! Feasibility (𝑥⃗)) do 

2.     𝑥⃗= {0, 0, …,0} 

3.     for each 𝑖 ∈ {1,2,… , 𝑝} do 

4.        r=random (0,1) 

5.        If (r < ) then 

6.           xi = 1 

7.           c (𝑥⃗) += c(i) 

8.           for each 𝑗 ∈ {1, … ,𝑚} do 

9.              fi (𝑥⃗) += fj(i) 

10.           end 

11.           for each 𝑗 ∈ {1, … , 𝑎} do 

12.              Ai (𝑥⃗) += Aj(i) 

13.           end 

14.           for each 𝑗 ∈ {1, … , 𝑟} do 

15.              Ri (𝑥⃗) += Rj(i) 

16.           end 

17.        end 

18.     end 

19.  end  

20. return 𝑥  ⃗

 

Line 1 uses function Feasibility(.) to ensure a feasible solu-

tion; it validates the restrictions of the UPPS of budget, area, 

and region. 

The algorithm tests each project for inclusion into the port-

folio in Lines 4 and 5. Whenever the condition is satisfied the 

costs, and values for objectives, areas, and regions are accu-

mulated (Lines 7, 8, 11, and 14, respectively). 

Feasibility requires the addition and relational ≤ opera-

tions. Given two interval numbers E = [𝐸, 𝐸] and D = [𝐷,𝐷], 

the result of C = E + D can be computed as C = [𝐸 + 𝐷,𝐸 +

𝐷]. In the other hand, the relational operation 𝑫 ≤ 𝑬 can be 

estimated using the relational quotient defined by equation 3. 

𝑝𝐸𝐷 =
𝐸− 𝐷 

(𝐸− 𝐸)+(𝐷− 𝐷)
                            (3) 

Based on the relational quotient, equation 4 defines the pos-

sibility measure of 𝑃𝑜𝑠𝑠(𝑫 ≤ 𝑬) used to express the desired 

relationship between the intervals D and E. This work estab-

lishes that 𝑃𝑜𝑠𝑠(𝑫 ≤ 𝑬)  0.5. 

𝑃𝑜𝑠𝑠(𝑫 ≤ 𝑬) = {

1 if 𝑝𝐸𝐷 > 1,
𝑝𝐸𝐷 if  0 ≤ 𝑝𝐸𝐷 ≤ 1,
0 if 𝑝𝐸𝐷 ≤ 0

 (4) 

Figure 1 depicts the process performed by Algorithm 1 in 

the construction of a portfolio. This figure shows an array 

78POLIBITS, vol. 62, 2020, pp. 77–84 https://doi.org/10.17562/PB-62-9

Lorena R. Rosas-Solórzano, Claudia G. Gómez-Santillán, Nelson Rangel-Valdez, Laura Cruz Reyes, Fausto A. Balderas-Jaramillo, et al.
IS

S
N

 2395-8618



 

 

with 25 cells representing a portfolio and the 25 potential 

projects. Each cell also represents an iteration and its random-

ly generated value. Note that the shadow cells correspond to 

those where the random value lay under the threshold  = 0.5. 

The process is repeated as many solutions the initial popula-

tion of I-MOEA/D has.   

 

 
1 2 3 4 5 6 7 8 

0.89 0.59 0.16 0.76 0.68 0.42 0.73 0.96 

 

9 10 11 12 13 14 15 16 

0.09 0.53 0.38 0.71 0.12 0.83 0.88 0.65 

 

17 18 19 20 21 22 23 24 

0.99 0.79 0.55 0.36 0.68 0.62 0.92 0.28 

 

25        

0.64        

 

 

Fig. 1. Graphic representation of the iterative process of Algorithm 1 to build 

a portfolio. 

 

While Figure 1 shows the process of selecting projects, Fig-

ure 2 shows the binary representation required by I-MOEA/D. 

The portfolio must be feasible, and all the constraints of costs, 

areas, and regions must be satisfied.  

 

 
1 2 3 4 5 6 7 8 9 

0 0 1 0 0 1 0 0 1 

 

10 11 12 13 14 15 16 17 18 

0 1 0 1 0 0 0 0 0 

 

19 20 21 22 23 24 25  

0 1 0 0 0 1 0  

 

Fig. 2. A binary vector representing a solution (or portfolio) used by I-

MOEA/D. Here the value 1 means that the project is part of the portfolio and 

0 otherwise. 

2.3 Multi-objective Evolutionary Algorithm Based on 

Decomposition with Intervals (I-MOEA/D) 

MOEA/D is a technique proposed by Zhang and Hui [23]. 

This algorithm consists of decomposing a multi-objective 

optimization problem into several sub-problems that are opti-

mized simultaneously. I-MOEA/D is a variant of MOEA/D 

that solves PPS with uncertainty; it implements evolutive 

operators to handle intervals. The intervals represent a mean 

of expression of uncertainty in objectives values, costs, and 

resources. Algorithm 2 shows the general pseudocode of the 

proposed strategy. I-MOEA/D gives an external population 

(EP) containing the non-dominated solutions found during the 

optimization process. 

Algorithm 2. I-MOEA/D 

Input: 

 MOP= Multi-objective Optimization Problem 

 N= Population size 

 p=Number of projects 

 m= Number of objectives 

 T= Neighborhood size of the weight vectors 

 MaximumEvaluations= Number of Generations 

Output:  

    EP= External population 

 

0. W = ReadWeightsVector() 

1. EP= ϕ 

2. Calculate_Euclidean_Distance (V) 

3. SortVector ()  

4. Population=GenerationOfInitialPopulation()  

5. Initialize_Z (Population)  

6. Generations=0; 

7. While (Generations < MaximumEvaluations) 

8.   i=1 

9.    For each 𝑖 ∈ 𝑁 do 

10.      [p1, p2]=SelectionByTournament(Population,B(i), T) 

11.       offspring= CrossoverOnePoint (p, [p1, p2]) 

12.       offspring= GeneMutation (p, offspring) 

13.       offspring=ImprovementGeneMutation(offspring) 

14.       UpdateZ (𝒛⃗⃗, f(offspring))  

15.       UpdateEP (EP, f(offspring))  

16.     end 

17. Generations++ 

18. end 

 

The binary vectors 𝑥⃗ = 〈𝑥1, 𝑥2, … ,  𝑥𝑝〉 encode one portfolio 

or solution provided by the algorithm. Such vectors are chro-

mosomes in the evolutive approach, and the vectors’ indexes 

of the array are alleles denoting distinct projects. 

The methods of I-MOEA/D that distinguish from imple-

mentations of other MOEA/D are five, appearing in bold in 

Algorithm 2 (Lines 2, 10, 13-15). These methods are the ini-

tialization function, the selection operator, the repair/improve 

operator, and the Z vector and EP set update. The remaining 

section provides a detailed description of the methods.  

Initialization Phase. In the first stage, the I-MOEA/D algo-

rithm makes the weight vector’s initial set (Line 0) and ini-

tializes EP to empty (Line 1). It also initializes the weight 

vectors {w1, w2, …, wN}, computes the Euclidean distance 

among them and initializes their vectors’ neighborhood B(i), 1 

 i  N (Lines 2 to 4). The Algorithm 1 fills the initial solution 

vector B of size N and associates each solution Bi to a weight 

vector wi. Then, the neighborhood B(i) of a weight vector wi 

contains the closest weight vectors index by Euclidean dis-

tance. Finally, the initialization phase fills the vector Z, the 

vector of best objective values found in the search process 

(Line 5). The vector B corresponds to the initial population. 

The main loop of the I-MOEA/D begins having as stop crite-

rion a maximum number of evaluations previously defined 

(Line 7). 

Selected random value 
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Selection by Tournament. The selection method selects 

from the population two solutions at random. Then it com-

pares them by cost and assigns the best as first parent p1, and 

the other as second parent p2. Algorithm 3 returns both parents 

(cf. [24]). This method requires comparing the cost using the 

interval relational comparison, as shown in section 2.1. 

 

Algorithm 3. Selection by Tournament 

Input 

 B = Population 

 Bi = Neighborhood of each weight vector i 

 T= neighborhood size of a weight vector 

Output 

Parents p1 y p2 

 

0. While (k==l) do 

1.      k = Random ()  

2.      l = Random ()  

3. end 

4. x = Bi, k 

5. y = Bi, l  

6. If (c (B[x]) < c (B [y]) then  

7.    p1=B[x]  

8.    p2=B[y] 

9. else 

10.    p1=B[y]  

11.    p2=B[x]  

12. end 

 

Crossover one point. The two chosen parents from the 

tournament selection method combine their chromosomes to 

produce one new offspring. For this purpose, the method 

selects a random index in the parents' vector as a cutting point 

to inherit the genes to the new child from each parent. This 

is a technique by Holland [25] and implemented in I-

MOEA/D to solve UPPS (Algorithm 4). This strategy does 

not require handling intervals. 

 

Algorithm 4. One Point Crossover 

Input 

 p = number of projects (allels on each parent) 

 [p1, p2] = parents Parent x1 

Output 

y = child 

0. cut = Random (1, p-1) 

1. y [0 … cut – 1] = p1[0 … cut – 1]  

2. y [cut … p – 1] = p2[cut … p – 1] 

3. return y 

 

Algorithm 4 has two phases. First, a cut is chosen at ran-

dom, and it must be between 1 and p – 1, where p is the num-

ber of projects (Line 0). After that, the child is created using 

parts from the parents p1, p2. The first parent will transmit the 

genes corresponding to alleles in indexes 0 to cut – 1 of its 

corresponding vector (Line 1); this is the best parent of both 

by cost. The second parent will donate the genes from its 

vector’ indexes from cut to p – 1 (Line 2). The new child is 

the offspring that the method returns. Figure 3 shows a graph-

ic depiction of how the parents’ genes are inherited to the 

child using our method. 
 

 

Fig. 3. Parents’ gene inheritance to the offspring 

 

Gene mutation. The mutation operator chosen is a simple 

mutation. This process selects one allele from the solution and 

changes its value. Given that the solution is a binary vector, 

the chosen allele will change its value from 1 to 0, or vice 

versa [26]. Algorithm 5 shows this strategy that also does not 

deal with intervals. 

 

Algorithm 5. Simple Mutation 

Input 

 p = number of projects 

 y = Solution to be mutated 

Output 

y’= Mutated child 

 

0. r= Random (0, p – 1) 

1. y’ = y 

2. y’[r] = y’[r] + 1) % 2; 

3. return y’ 

 

After applying the genetic operators by I-MOEA/D (Lines 

10-12, Algorithm 2), the generated solution goes into a re-

pair/improvement process (Line 13, Algorithm 2).  The meth-

od repairs/improves a solution by making unfeasible solutions 

feasible. The strategy used randomly takes out projects until 

the satisfaction of the restrictions. This procedure requires the 

implementation of interval operations, both arithmetic and 

relational. 

Each iteration of I-MOEA/D updates the vectors 𝑧, B (or 

Population), and EP with the offspring. The offspring substi-

tutes the ideal objectives’ values in 𝑧 if necessary. The EP set 

must eliminate solutions dominated by offspring and include 

it if is nob-dominated. The dominance condition uses the 

interval relation operations previously defined. 

Finally, when the stop criterion is met, I-MOEA/D reports the 

set EP as the approximated region of interest.  

2.4 PPS instance generator with intervals 

Algorithm 6 shows the pseudocode of the proposed instance 

generator for PPS with intervals.  The user configurable pa-

rameters to create an instance are: budget, number of objec-

tives, projects, areas and regions, and limits of costs, and 

objectives. The outputs are the interval values that define the 
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budget, areas, regions, and for projects their costs, objectives 

values, and the area and region where they belong. 

The generator creates an interval budget in Line 0 based on 

the input budget B. Figure 4 shows an example of the defini-

tion of such intervals. 
 

 

 

 

 

 

 

290 000 

 

 

500 000 

 

650 000 

 

Fig. 4. Budget parameter 

 

From Lines 1 to 6 the generator creates the values for the 

areas of the instance. Here, it uses the budget B to define 

appropriate limites to areas’ values (Lines 1 and 2). After that, 

it randomly chose values withing those limites as the bound-

ing values of each area (Lines 4 and 5).  

From Lines 7 to 12 the generator assigns values to the regions 

in a similar fashion as done in the areas; i.e., it uses the budget 

to define appropriate maximum limits, and with them random-

ly chose values to bound the distinct regions. 

The next step in the generator is the definition of values for 

the projects. Lines 14 to 26 perform this task. First the area 

and regions are randomly chosen in lines 14 and 15. After 

that, the cost of the project is created within the limits provid-

ed as inputs (Lines 16 to 17). From Lines 18 to 26 the process 

generates the values for the objectives of a project. It uses two 

strategies, one based on the costs of the project (Line 20), and 

the other based on the limits for the objectives established as 

input (Line 22). With the value o the generator creates an 

interval for the objective using 80% of it as lower bound and 

120% as upper bound. 

3. EXPERIMENTATION 

This section contains a series of experiments aimed to vali-

date the quality of the I-MOEA/D compared with the I-

NSGA-II algorithm [18].  

The configuration of the experimental design took into ac-

count the following details: a) the size of the set of tested 

UPPS instances was 7; b) the project set involved was always 

of cardinality 100; c) the number of objectives involved in the 

cases varied according to {2,3,4,8,9,13,15}; d) the proposed 

random generator shown in section 2.4 generated the instanc-

es. Concerning the algorithms, the population size was 100, 

the stop criterion was after 500 generations, and the crossover 

and mutation operators considered a probability of 100%.  

The algorithm test environment was implemented in the Ja-

va programming language and ran on a computer with the 

following features: 2.20 GHz Intel Core i5 CPU, 4 GB RAM, 

and Windows 10 Operating System. 

Algorithm 6. PPS with intervals instance generator 

Input: 

 B  Budget (No interval) 

 {m, p, a, r}  Numbr of objectives, projects, areas, and 

regions 

 [𝑐, 𝑐]  Project Costs extreme limits (No Intervals) 

 [𝑚,𝑚]  Objectives extreme limits 

Output: 

 [𝐵, 𝐵]  Budget as interval 

 {[𝑎1, 𝑎1] , [𝑎2, 𝑎2] , … , [𝑎𝑎, 𝑎𝑎]}  Limits of each areas i 

 {[𝑟1, 𝑟1] , [𝑟2, 𝑟2] , … , [𝑟𝑟 , 𝑟𝑟]}  Limits of each region r 

 {{C1, A1, R1}, …, {Cp, Ap, Rp}}  Cost, Area and region 

for each project p 

 {[𝑓1𝑝, 𝑓1𝑝] , [𝑓2𝑝, 𝑓2𝑝] , … , [𝑓𝑚𝑝, 𝑓𝑚𝑝]}Benefit from the m 

objectives of each project p (in intervals) 

 

0. [𝐵, 𝐵] = [0.58B, 1.3B] 

1. [𝑎𝑙 , 𝑎𝑙] = [(0.7 * B)/(1.7a+0.1a2), (1.27 * B)/(1.7a+0.1a2)] 

2. [𝑎𝑢, 𝑎𝑢] = [((2.159 +0.127a) *B) / a, ((2.635+0.155a) * B)/a] 

3. for each 𝑖 ∈ {1, 2, … , 𝑎} do 

4.     𝑎𝑖 = 𝑎𝑙 + Random (𝑎𝑙 − 𝑎𝑙) 

5.     𝑎𝑖 = 𝑎𝑢 + Random (𝑎𝑢 − 𝑎𝑢) 

6. end 

7. [𝑟𝑙 , 𝑟𝑙] = [(0.8 * B)/(1.7r+0.1r2), (1.2 * B)/(1.7r+0.1r2)] 

8. [𝑟𝑢, 𝑟𝑢] = [((1.02+0.06r) *B)/r, ((2.38 +0.14r) *B)/r] 

9. for each 𝑖 ∈ {1, 2, … , 𝑟} do 

10.     𝑟𝑖 = 𝑟𝑙 + Random (𝑟𝑙 − 𝑟𝑙) 

11.     𝑟𝑖 = 𝑟𝑢 + Random (𝑟𝑢 − 𝑟𝑢) 

12. end 

13. for each 𝑖 ∈ {1, 2, … , 𝑝} do 

14.     Ai= Random(a) 

15.     Ri= Random(r) 

16.     v = 𝑐 + Random (𝑐 − 𝑐) 

17.     [𝐶𝑖 , 𝐶𝑖] = [0.99 ∗ 𝑣, 1.2 ∗ 𝑣] 

18.      for each 𝑗 ∈ {1,2, … ,𝑚} do 

19.             if (Random.nextBoolean()) then 

20.                 obj = Random ((v– 𝑐)/ (𝑐 − 𝑐)) 

21.             else  

22.                 o = 𝑚 + Random (𝑚 −𝑚)   

23.            end 

24.          𝑓𝑖𝑗= 0.8*o 

25           𝑓𝑖𝑗 = 1.1*o 

26.     end 

27.end 

The number of non-dominated portfolios, and the portfolios’ 

cardinality are the two quality measurements of interest for 

this work to assess the algorithms’ performance for compari-

son purposes.  Equations (5) to (8) show the indicators formed 

from the previous measurements, where EP is the final non-

dominated set of algorithm’s solutions after 30 independent 

-42% = -210 000 +30% = +150 000 
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runs. Let’s point out that larger indicator’ values represent 

better performance in an algorithm. 

𝐼1 = |𝐸𝑃| (5) 

𝐼2 =
∑ |𝑥|𝑥∈𝐸𝑃

|𝐸𝑃|
 

(6) 

𝐼3 = min
𝑥∈𝐸𝑃

{|𝑥|} (7) 

𝐼4 = max
𝑥∈𝐸𝑃

{|𝑥|} (8) 

Table 1 compares I-MOEA/D and I-NSGA-II.  Columns 1 

and 2 show the instances’ names and algorithms, respectively. 

Columns 3 to 6 shows the indicators’ values. Note that the 

encoded name oipj contains the numbers of objectives i and 

projects j. 

According to Table 1, I-NSGA-II improves I-MOEA/D in 

the instance with two objectives. The differences range from 

5% to 12% in the indicators’ observed values; this is a com-

mon condition since NSGA-II generally has a good perfor-

mance in that number of objectives.  

Consequently, I- MOEA/D is the clear winner in the remain-

ing instances; its performance differences vary from 69% to 

97%.  In conclusion, the overall results shown in Table 2 

demonstrates that I-MOEA/D improves I-NSGA-II in all the 

indicators. These results also indicate poor performance of I-

NSGA-II in many-objective problems, a condition previously 

observed. 

TABLE 1 

COMPARISON OF I-MOEA/D AND I-NSGA-II BY QUALITY INDICATORS 

Instance Algorithm I1 I2 I3 I4 

o2p100 
I-NSGA-II 63 57 56 58 

I-MOEA/D 55 54 53 55 

o3p100 
I-NSGA-II 526 39 37 40 

I-MOEA/D 4556 44 40 46 

o4p100 
I-NSGA-II 139 58 57 59 

I-MOEA/D 449 68 67 68 

o8p100 
I-NSGA-II 585 38 35 40 

I-MOEA/D 21327 46 41 47 

o9p100 
I-NSGA-II 579 41 38 42 

I-MOEA/D 27863 45 40 47 

o13p100 
I-NSGA-II 521 52 49 54 

I-MOEA/D 5123 63 61 64 

o15p100 
I-NSGA-II 677 34 31 37 

I-MOEA/D 21417 47 41 48 

To provide further insights, we compute the relative differ-

ences among the indicators measured for I-MOEA/D and I-

NSGA-II. For this purpose, equation 9 defines a metric to 

calculate the percentage of improvement achieved by the 

winner algorithm for the given indicator Ik
j, where j is the 

indicator and k=1 if the algorithm is I-MOEA/D or k=2 if it is 

I-NSGA-II. A winner algorithm has the highest indicator 

value. Tables 2 and 3 summarizes the results obtained from 

this metric for instances with objectives 3 to 15. 

 

Diff(𝐼𝑗
1, 𝐼𝑗

2) =

{
 
 

 
 100(

𝐼𝑗
1 − 𝐼𝑗

2

𝐼𝑗
1 ) ,    if 𝐼𝑗

1 > 𝐼𝑗
2 

100 (
𝐼𝑗
2 − 𝐼𝑗

1

𝐼𝑗
2 ) ,    otherwise

 (9) 

 

The results from Tables 2 and 3 shows that I-MOEA/D im-

proves all the indicators measures with respect to I-NSGA-II 

in percentual ranges that vary in [69, 97], [8, 27], [7, 24], and 

[10,13] for the indicators I1, I2, I3, and I4, respectively. These 

results tell that I-MOEA/D obtains more non-dominated solu-

tions and portfolios with a greater number of projects, which 

is desirable. 

TABLE 2 

PERCENTAGE DIFFERENCE OF NON-NOMINATED 

PORTFOLIOS AND AVERAGE CARDINALITY 

Instance Diff (I1
1, I2

1) Diff (I1
2, I2

2) 

o3p100 88% 11% 

o4p100 69% 14% 

o8p100 97% 17% 

o9p100 97% 8% 

o13p100 89% 17% 

o15p100 96% 27% 

TABLE 3 

PERCENTAGE DIFFERENCE IN MINIMUM AND MAXIMUM  

CARDINALITY OF PORTFOLIOS 

Instance Diff (I1
3, I2

3) Diff (I1
4, I2

4) 

o3p100 7% 13% 

o4p100 14% 13% 

o8p100 14% 14% 

o9p100 5% 10% 

o13p100 19% 15% 

o15p100 24% 22% 

Finally, Table 4 compares the dominance proportion per al-

gorithm. For this purpose, a set EP* combines the final sets 

EP1 and EP2; this new set is the final non-dominated front. 

Then, we calculate the number of solutions of EP1 and EP2 

that appear in EP*. Let’s note that EP1 and EP2 correspond to 

the final non-dominated fronts EP of I-MOEA/D and I-

NSGA-II, respectively. Column 3 contains the number of non-

dominated solutions still appearing in EP*. Column 4 reports 

the number of solutions that became dominated after integra-

tion.  
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TABLE 4 

DOMINANCE PROPORTION AMONG I-MOEA/D E I-NSGA-II 

Instance Algorithm 
Total, non-dominated 

portfolios 

Dominated 

portfolios 

o2p100 
I-NSGA-II 0 63 

I-MOEA/D 55 0 

o3p100 
I-NSGA-II 441 85 

I-MOEA/D 4556 0 

o4p100 
I-NSGA-II 0 139 

I-MOEA/D 449 0 

o8p100 
I-NSGA-II 1 584 

I-MOEA/D 21327 0 

o9p100 
I-NSGA-II 546 33 

I-MOEA/D 27863 0 

o13p100 
I-NSGA-II 0 521 

I-MOEA/D 5123 0 

o15p100 
I-NSGA-II 1 676 

I-MOEA/D 21417 0 

 

Considering the information of Table 4, all the solutions of 

I-MOEA/D remain non-dominated. Moreover, it turns out that 

they dominate several solutions provided by I-NSGA-II and, 

in some cases, all of them (instances 2 and 13).  These results 

corroborate the excellent performance of I-MOEA/D to solve 

UPPS over I-NSGA-II with many objectives. 

The experimental design concluded with an analysis of the 

statistical differences of the observed results. Particularly, a 

Wilcoxon’s test [27] validated the difference in the indicator 

I1. The considered sample was the number of non-dominated 

portfolios of each of the 30 runs of an instance. The test uti-

lized a significance level of 5%. The null hypothesis was 

“H0=The medians of the differences between the two group 

samples are equal”. Table 5 summarizes the results. 

TABLE 5 

 WILCOXON TEST 

Instance   p value Result 

o2p100 0.57746866 Is accepted H0 

o3p100 0.04311445 Is rejected H0 

o4p100 0.04311445 Is rejected H0 

o8p100 0.04311445 Is rejected H0 

o9p100 0.04311445 Is rejected H0 

o13p100 0.04311445 Is rejected H0 

o15p100 0.04311445 Is rejected H0 

 

The results from Table 5 show that there are significant dif-

ferences in 6 instances, and based on information from Table 

1, the differences favor I-MOEA/D. Let us point out I-NSGA-

II performed better than I-MOEA/D only in the instance 

“o2p100”. However, there is no significant statistical differ-

ence in their performance. In conclusion, the overall perfor-

mance of I-MOEA/D improves largely that of I-NSGA-II in 

the selected instances of UPPS. 

4. CONCLUSIONS 

This article proposes a new evolutionary strategy called I-

MOEA/D. The main features of this algorithm are the use of 

intervals to express uncertainty and handling many objectives. 

A comparison in performance between I-MOEA/D and I-

NSGA-II (a state-of-the-art approach) assessed the relevance 

of our approach. In equal experimental conditions under a 

controlled environment, the results show that I-MOEA/D 

outperforms I-NSGA-II [18], demonstrating the significance 

of I-MOEA/D. 

The I-MOEA/D requires at least to modify the genetic oper-

ators, the repair/improve operator, the update methods of ideal 

objectives values and population, in order to integrate the use 

of intervals properly. The strategy required the definition of 

some interval operators to perform arithmetic, relational and 

dominance operations. The dominance operator appears with 

the definition of relational operators for comparison. 

The observed results show that I-MOEA/D and I-NSGA-II 

solve UPPS. However, with increasing objectives, the perfor-

mance of I-MOEA/D improves that of I-NSGA-II, as ex-

pected, particularly in the analyzed instances with number of 

objectives varying from two to fifteen. The results show that 

with an increasing number of objectives, I-MOEA/D return 

solutions with better quality. 

Finally, the number and diversity of solutions offered by I-

MOEA/D are large. This is a good condition in contrast to I-

NSGA-II because it means that I-MOEA/D approximates the 

Pareto front better. However, it is interesting to ask if the 

search process of I-MOEA/D can include DM’s preferences. 

If the latter is possible, then, a narrower set of solutions could 

be delivered to the DM, based on his/her priorities. Hence, the 

proper incorporation of preferences in the search process of I-

MOEA/D represents an attractive research area for future 

developments. 
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