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Abstract—Knowing the demand for products in advance would 

be ideal for companies that strategically relocate products in 

their warehouses to facilitate the picking process, which is the 

most expensive activity in a warehouse. In this sense, an 

assembly plant from Ciudad Juárez, Chihuahua, Mexico, that 

handles approximately 10,477 parts in its inventory, periodically 

relocates them in warehouse zones to facilitate the picking 

process. However, relocation is done empirically based on the 

total number of outbound inventory movements of each of the 

parts made in a given time. This paper describes the 

implementation of time-series models to forecast the demand for 

parts that could improve the relocation process. For this purpose, 

different Holt-Winters Seasonal and SARIMA models were 

implemented. For the implementation of the SARIMA models, 

the Box-Jenkins methodology was followed. The AIC and BIC 

metrics were used to identify the best Holt-Winters Seasonal 

model and the best SARIMA model. Tests were performed on the 

residual series to check that model is fit to the data. The RMSE 

and MAPE metrics were used to evaluate the performance of 

Holt-Winters Seasonal and SARIMA models. The results of the 

evaluation carried out indicate that the SARIMA model 

outperforms to Holt-Winters Seasonal model. 

Index Terms—Forecast demand, Holt-Winters Seasonal model, 

Seasonal Auto-Regressive Integrated Moving Average model, 

Time Series, Box-Jenkins methodology. 

1. INTRODUCTION 

IUDAD Juárez is a city whose economy is strongly 

based on the assembly plant industry. It has the largest 

number of assembly plants operating under the IMMEX (In-

dustria Manufacturera, Maquiladora y de Servicios de Ex-

portación) scheme in the entire state of Chihuahua with 330 

assembly plants (65%), followed by the city of Chihuahua 

with 109 (22%) and the other municipalities with 66 (13%). 

At the national level, it is the second city with 330 assembly 

plants under this scheme. Among the different sectors, the 

Automotive, the Electronics, the Medical, the Plastics Metals, 

the Call Center, and the Packaging predominate [1]. 

In an assembly plant of this city dedicated to the manufac-

ture of smoke detectors, fire alarms, among other products, 

the raw material used is stored in a warehouse within the same 

plant. 

Currently, the warehouse is divided into four zones: A, B, 

C, and D. These zones are strategically organized to minimize 

the time for picking parts. The parts with the highest demand 

are stored in bins located in zone A, close to the production 

area. On the contrary, the parts with the lowest demand, either 

because they are obsolete or because they were never used, 

are located in zone D. It is important to note that, based on the 

parts demand, these are periodically relocated to the ware-

house zones. 

The criteria used by the assembly plant to locate each of 

the parts in the warehouse zones is based on the cumulative 

distribution of the demand they present. The demand is de-

fined according to the outbound inventory movement of each 

of the parts. The parts that represent a cumulative distribution 

of 70% of the demand are located in zone A. The parts that are 

located in zone B represent 25% of the demand. In zone C are 

located the parts that represent 5% of the demand. Finally, in 

zone D, the parts that did not have movement are located.  

Although the parts with the highest demand are identified 

in this empirical way, the trend of movements is not consid-

ered when assigning their location in the warehouse. For ex-

ample, following this criterion, the part with the highest num-

ber of movements should be located in zone A. However, if 

the trend of its movements shows a considerable decrease in 

recent months, perhaps that part should not be located in zone 

A but zone B. 

Failure to properly locate the parts in warehouse zones that 

minimize the picking time could cause the delivery time of 

these to the production area to be long; even the production 

lines could be stopped. For this reason, knowing the future 

demand of the parts could help improve the relocation pro-

cess. 

In this sense, time series models have been successfully 

applied in various sectors of the supply chain to forecast de-

mand. In [2], different ARIMA models were implemented 

following the Box-Jenkins methodology to model and forecast 

the demand in a food company. Using the Akaike, Schwarz 

Bayesian, maximum likelihood, and standard error criteria, 

they identified the best model was an ARIMA (1,0,1). The 

authors note that forecasting future demand affects the supply 

chain and provides reliable guidelines for decision making. 

In [3], different time series models applied to forecasting 
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the workload in a zone picking warehouse were analyzed. A 

real case study is presented in which they demonstrate the 

value of applying time series forecasting models to forecast 

the daily number of order lines. They mention that improving 

workload planning can contribute to an effective and efficient 

order-picking process. 

In [4], the demand for an inventory of historical data of 

Panadol 650mg was optimized using forecasting techniques. 

The forecast models single moving average, single exponen-

tial smoothing, double moving average, double exponential 

smoothing, regression, Holt-Winters additive, Seasonal addi-

tive, Holt-Winters multiplicative, seasonal multiplicative, and 

ARIMA were compared using the metrics RMSE, MSE, 

MAD, and MAPE. The authors report that the best forecasting 

technique was regression analysis. 

In [5], the combination of Bootstrap aggregating and Holt-

Winters methods was proposed to forecast demand in the air 

transport industry. They compared their proposal against the 

SARIMA, Holt-Winters, ETS, Bagged.BLD.MBB.ETS and 

Seasonal Naive models using Symmetric Mean Absolute 

Percentage Error (sMAPE). The authors report that their pro-

posal provided more accurate forecasts. 

This paper describes the implementation of time-series 

models to forecast the demand for inventory parts, which 

could improve the relocation process in warehouse zones and 

facilitate the picking process. The characteristics of the time 

series were analyzed, and the Augmented Dickey-Fuller and 

Kwaitowski-Phillips-Schmidt-Shin tests were applied to de-

termine whether the series is stationary. The Holt-Winters 

Seasonal and a modification of ARIMA models, called 

SARIMA, were selected because of the characteristics of the 

time series. The Box-Cox transformation was applied to the 

time series to fit SARIMA models. Additionally, the time 

series was differentiated to transform it into a stationary se-

ries. The SARIMA model that best fits the time series was 

selected based on the Akaike Information Criteria and Bayesi-

an Information Criteria metrics. Tests were applied to the 

SARIMA model to see if the residual series is white noise. 

The paper is organized in the following way: Section 2 

provides a background of the concepts related to time series 

models. Section 3 presents the preprocessing performed on 

the data provided by the warehouse to be used by the time-

series models. Section 4 shows the empirical and statistical 

analysis applied to the data for studying its features. Section 5 

shows the selection process of the time series model. Section 

6 shows the results and discussions. Finally, Section 7 pre-

sents the conclusions of this work. 

2. TIME SERIES BACKGROUND 

According to Chris Chatfield, "a time series is a set of obser-

vations measured sequentially through time" [6]. Analyzing 

time series is usually very useful to find relationships or trend 

patterns in the variable to be analyzed. Applying time-series 

models allows forecasting the future behavior of the variable 

to be analyzed based on its historical data. 

A time series consists of four components [7], [8]: 

1. Trend. It refers to the behavior of the time series. Its 

direction and slope can remain constant or change 

throughout the series. It can be linear, stochastic, or 

deterministic. When it remains stagnant, it means there 

is no trend. 

2. Seasonality. It is when the series presents regular sea-

sonal patterns, that is, periodic variations, such as an-

nual, monthly, quarter changes, etc. These patterns are 

generally of a fixed nature; that is, they are associated 

with some calendar aspect (for example, days, months, 

years). 

3. Cycles. It represents a pattern that repeats itself over 

time. It is similar to the seasonal component; however, 

the cyclical effect patterns are not of fixed duration; 

that is, their duration varies from one cycle to another. 

4. Irregular variation. It represents random noise, that is, 

the residual variations of the series after being divided 

into the three previous components. When this com-

ponent is completely random (i.e., not autocorrelated), 

it is known as white noise, which is analyzed to esti-

mate the adequacy of a time-series model. 

A time series can be either stationary or non-stationary. It is 

stationary when it does not have a trend or seasonal effects 

and its mean or variance are consistent over time. It is worth 

mentioning that the statistical modeling methods require that 

the time series be stationary since they are easier to model. 

Non-stationary series exhibit seasonal patterns and trends, and 

their mean and variance change over time. Statistical model-

ing methods require making the data stationary, removing 

these components. 

There are different time-series models such as (a) Simple 

Exponential Smoothing for data without trend or seasonality, 

(b) Holt’s Linear Trend model for data with a trend but no 

seasonality, (c) Holt-Winters Seasonal model for data with 

trend and/or seasonality, (d) Autoregressive Integrated Mov-

ing Average (ARIMA) models (also known as Box–Jenkins 

models), among others. As can be imagined, choosing a time-

series model depends on the features of the time series, which 

is crucial for achieving the expected results. Of the aforemen-

tioned models, Holt-Winters Seasonal and a modification of 

ARIMA, called SARIMA, were implemented in this paper. 

3. DATA PREPROCESSING 

The database provided by the assembly plant contains the 

inventory movements generated from the year 2017 to Sep-

tember 2020 of the parts handled by the warehouse. When a 

part is used to fulfill a customer service order, an outbound 

inventory movement is recorded with the date the movement 

was made, thus forming a time series for each part. 
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The records in this database are made up of the attributes: 

material name, description, type of movement, plant, location, 

quantity, and PostingDate. Of these attributes, PostingDate 

was chosen as a period for the time-series model because it 

represents the date on which the movements were made. Ad-

ditionally, outbound inventory movements of each part were 

counted to represent the value of the independent variable.  

Due to the way the warehouse operates, the count of out-

bound inventory movements was grouped monthly to form the 

periods for each of the parts. The monthly movements of each 

of the parts were stored in different .csv files. It is worth men-

tioning that so far, the time-series models described in this 

paper have only been implemented in the part with the highest 

demand in the historical data. Figure 1 shows the histogram of 

movements of the part with the highest demand in the histori-

cal data. 

 
Fig. 1. Histogram of the part with the highest demand in the historical data. 

4. DATA ANALYSIS 

Before selecting the time-series model, it was determined 

whether the time series data exhibits trend and seasonal ef-

fects. To determine if the data exhibits trend and seasonal 

effects, the following analyzes were performed: (a) empirical 

visual analysis and (b) statistical tests. 

 

4.1 Empirical visual analysis 

Figure 2 shows the time series corresponding to the part with 

the highest number of movements in the warehouse inventory. 

At first glance, it is difficult to determine whether the data is 

seasonal. 

In order to visually perform an exploratory analysis of the 

time series, it was decomposed into the trend (𝑇𝑡), seasonality 

(𝑆𝑡), and residual (𝐸𝑡) components, shown in Figures 3 to 5, 

respectively. This decomposition allows better identification 

of the underlying patterns of the time series. A classical addi-

tive decomposition was used because the seasonal variation 

has the same magnitude over time where each value (𝑌𝑡) of 

the time series is the sum of these three components, as shown 

in Equation (1): 

𝑌𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝐸𝑡                                (1) 

In Figure 3 is observed that the trend increases or de-

creases based on time; that is, the mean changes over time. In 

Figure 4, a seasonal effect is perceived; that is, a repeated 

pattern is shown. Based on the above, it is suspected that the 

series could be non-stationary. Also, the residuals displayed in 

Figure 5 do not show a stable pattern and are not close to 0. 

 
Fig. 2. Time series of the part with the highest number of movements. 

 

Fig. 3. Trend component. 

 

Fig. 4. Seasonal component. 

 

Fig. 5. Residual component. 

4.2 Statistical tests to determine seasonality 

A non-stationary time series shows seasonal effects and 

trends. If a time series is non-stationary, it means that the 

mean and the variance are not constant; that is, they change 

over time. Some forecasting models are susceptible to non-

stationary time series. For this reason, before applying a time-

series model to a series, it is necessary to know if the time 

series is non-stationary. 

To reinforce the empirical analysis presented in Sec-

tion 4.1, the Augmented Dickey-Fuller (ADF) test [9] was 

used to determine if a series is non-stationary. Additionally, 

the Kwai-towski-Phillips-Schmidt-Shin (KPSS) test [10] was 

also applied to determine if the series is stationary. 

ADF is a statistical test known as the unit root test. The 

purpose of the test is to determine the strength with which a 

time series is defined by a trend. The null hypothesis of the 
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test is that there is a unit root in the time series, that is, that the 

series is not stationary. The alternative hypothesis of the test is 

that there is no unit root in the time series, that is, that the 

series is stationary. 

If the p-value ≥ 0.05, the test fails to reject the null hy-

pothesis (the series has a unit root, that is, it is non-stationary). 

If the p-value < 0.05, the test rejects the null hypothesis (the 

series does not have a unit root, that is, it is stationary). 

After applying the ADF test, the computed p-value was 

0.650, so fail to reject the null hypothesis, and it is confirmed 

that the time series is non-stationary. 

On the other hand, the KPSS test is a statistical test used 

to analyze the stationarity of a series based on a deterministic 

trend. The null hypothesis of the test is that the time series is 

stationary. The alternative hypothesis of the test is that the 

time series is not stationary. 

If the p-value ≥ 0.05, fail to reject the null hypothesis (the 

series is stationary). If the p-value < 0.05, reject the null hy-

pothesis (the series is non-stationary).  

After applying the KPSS test, the computed p-value was 

0.069, so it fails to reject the null hypothesis, and it is con-

firmed that the time series is stationary. 

Because the ADF test confirms that the series is non-

stationary and the KPSS test indicates that it is stationary, the 

series had to be transformed as described in Section 5.2. 

5. TIME SERIES MODEL SELECTION 

Because the time series exhibits a pattern in the seasonal 

component, shown in Figure 4, forecasting models that con-

sider seasonality were considered. The models considered 

were Holt-Winters Seasonal and Seasonal ARIMA (SARI-

MA). These models were implemented through the Stats-

Models library in the Python language. Statsmodels is a suite 

of high-level statistical models that allows for statistical tests 

and data exploration [11]. 

To determine the best forecasting model, the metrics 

commonly used in classical time series, Akaike Information 

Criteria (AIC) [12] and Bayesian Information Criteria (BIC) 

[13], were considered. 

 

5.1 Holt-Winters Seasonal model 

The Holt-Winters model [14] that extends the Holt model is 

used to predict time series data that contain trends and season-

al components. It contains three smoothing equations for the: 

level of the series, trend, and seasonal components. 

There are two versions of this model described in [7], [15], 

[16], whose difference lies in how the seasonality is modeled, 

additive and multiplicative versions. The additive version is 

suitable when variations are independent of the level and the 

multiplicative version when seasonal variations are changing 

proportionally to the level of the series. 

Analyzing the seasonal fluctuations shown in Figure 2, it 

was not observed that these increase in magnitude with the 

level of the series. For this reason, the additive version was 

used. Equation (2) is applied to smooth the level of the series. 

Equation (3) to smooth the trend. Equation (4) to smooth the 

seasonal components. Equation (5) to forecast the next h val-

ues of the time series. 

𝐿𝑡 = 𝛼(𝑌𝑡 − 𝑆𝑡−𝑀) + (1 − 𝛼)(𝐿𝑡−1 + 𝑇𝑡−1)  (2) 

𝑇𝑡 = 𝛽(𝐿𝑡 − 𝐿𝑡−1) + (1 − 𝛽)𝑇𝑡−1   (3) 

𝑆𝑡 = 𝛾(𝑌𝑡 − 𝐿𝑡) + (1 − 𝛾)𝑆𝑡−𝑀   (4) 

𝑌𝑡+ℎ = 𝐿𝑡 + (ℎ)𝑇𝑡 + 𝑆𝑡−𝑀−ℎ   (5) 

where: 

𝑌𝑡+1  is the forecast value at time 𝑡 + 1. 

𝐿𝑡  is the level at time 𝑡. 

𝑇𝑡 is the trend value at time 𝑡. 

𝑆𝑡 is the seasonal value at time 𝑡. 
𝛼, 𝛽, 𝛾 are smoothing parameters. 

ℎ is the forecast horizon. 

𝑀 is the number of seasonal periods; 

0 ≤ 𝛼 ≤ 1; 0 ≤ 𝛽 ≤ 1; 0 ≤ 𝛾 ≤ 1. 

Different combinations of values in the smoothing_level 

(SL), smoothing_slope (SSL), smoothing_seasonal (SSE), and 

seasonal_period (SP) parameters were tested using brute 

force to identify the best model. The values used in each pa-

rameter were 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. The 

time used in this experimentation was 343.89 seconds using a 

computer with an Intel Corte i7-8650U @ 1.90GHz 2.11GHz 

processor, 16 GB RAM, and Windows 10 pro 64-bits operat-

ing system. Table 1 shows the three best models that obtained 

the lowest values in the AIC and BIC metrics. Of these, the 

best model was Holt-Winters Seasonal (0.8, 0.1, 0.0)12 with 

AIC=212.880 and BIC=238.217 whose parameters were 

SL=0.8, SSL=0.1, SSE=0.0 and SP=12. 

TABLE 1 

BEST HOLT-WINTERS SEASONAL ADDITIVE MODELS  

Model (SL,SSL,SSE)SP AIC BIC  

(0.8, 0.1, 0.0)12 212.880 238.217  

(0.9, 0.1, 0.0)12 212.899 238.235  

(0.7, 0.2, 0.0)12 212.968 238.304  

 

5.2 ARIMA models 

In addition to smoothing techniques, ARIMA models were 

also used. 

ARIMA (Auto-Regressive Integrated Moving Average) 

models are formed by three components: AR for the auto-

regressive component, I for the integrated component, and MA 

for the moving average component. It is usually expressed 

with the notation: ARIMA (p, d, q) where p represents the 

number of correlated lags to be included in the AR compo-

nent, d the number of times that the raw observations were 

differenced, and q the size of the moving average window [8]. 

The parameters p, d, and q are non-negative integers that 
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indicate the order of the different components of the model. 

The AR (p) and MA (q) components are predictors that ex-

plain the autocorrelation, and the I component indicates the 

order of differentiation that has been applied to the time series 

to leave the series stationary, since before including AR or 

MA terms, the series must be stationary. 

SARIMA models are a modification of ARIMA to support 

a seasonal time series. They are usually expressed as ARIMA 

(p, d, q)×(P, D, Q)s where p, d, and q are the non-seasonal 

parameters, P, D, Q the seasonal component of the time se-

ries, and s is the seasonal periodicity. SARIMA models are 

defined from Equations (6) to (10). 
 

φ𝑝(𝐵)ϕ𝑃(𝐵
𝑠)𝑑(1 − 𝐵𝑠)𝐷𝑌𝑡 = 𝜃𝑞(𝐵)𝛩𝑄(𝐵

𝑠)𝜀𝑡 (6) 

φ𝑝(𝐵) = 1 − ϕ1𝐵 − ϕ2𝐵
2 −⋯− ϕ𝑝𝐵

𝑝  (7) 

φ𝑝(𝐵
𝑠) = 1 − ϕ𝑠𝐵

𝑠 −ϕ2𝑠𝐵
2𝑠 −⋯−ϕ𝑃𝑠𝐵

𝑃𝑠 (8) 

𝜃𝑞(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵
2 −⋯− 𝜃𝑞𝐵

𝑞  (9) 

𝛩𝑄(𝐵
𝑠) = 1 − 𝛩𝑠𝐵

𝑠 − 𝛩2𝑠𝐵
2𝑠 −⋯− 𝛩𝑄𝑠𝐵

𝑄𝑠 (10) 
 

where: 

φ𝑝(𝐵):  Polynomial of order p that represents the non-

seasonal autoregressive component. 

ϕ𝑃(𝐵
𝑠)𝑑: Polynomial of order P that represents the seasonal 

autoregressive component. 

𝜃𝑞(𝐵):  Polynomial of order q that represents the non-

seasonal moving average component. 

𝛩𝑄(𝐵
𝑠):  Polynomial of order Q that represents the season-

al moving average component. 

𝜀𝑡:  An independently distributed random variable 

(white noise). 

(1 − 𝐵𝑠)𝐷: Dth seasonal difference of season s. 
 

To implement SARIMA models, the four steps of the Box-

Jenkins methodology described in [17] were followed.  

 

Step 1. Stationarity of the data 

Because the ADF test indicated that the series is not stationary 

and the KPSS test indicated the opposite, the Box-Cox trans-

formation was applied to stabilize the variance of the time 

series. Subsequently, the series was differentiated to eliminate 

the trend and seasonality, resulting in a stationary time series, 

shown in Figure 6. Compared with Figure 2, the variance 

decreased, and the trend is constant; however, irregular fluc-

tuations are observed between the months of November 2018 

and March 2019. 

When both tests were reapplied, the p-value of the ADF 

test was 0.000, so the null hypothesis was rejected, indicating 

that the series is stationary. The p-value of the KPSS test was 

0.100, so the null hypothesis was not rejected, indicating that 

the series is stationary. 

 

Step 2. Identification of the model 

Subsequently, the correlogram of the series was generated to 

obtain the autocorrelation function (ACF) and the partial 

autocorrelation function (PACF). ACF and PACF plots are 

used to determine the appropriate values of p and q and their 

seasonal equivalent P and Q of the possible candidate models 

since more than one model could be considered from these 

values. It should be mentioned that in this step, subjectivity is 

presented when selecting the best model since the selection is 

based on the interpretation of the ACF and PACF plots. Fig-

ures 7 and 8 show the ACF and PACF plots of the series, 

respectively. 

 
Fig. 6. Box-Cox transformation and differencing the time series. 

 
Fig. 7. Autocorrelation function plot. 

 
Fig. 8. Partial autocorrelation function plot. 

It can be seen in the ACF plot shown in Figure 7 that the 

first lag is significant, so MA (1) component is suggested, that 

is, set q = 1. In the PACF plot shown in Figure 8, it can be 

observed that the first lag is significant, so AR (1) component 

is suggested, that is, set p = 1. Since the series was differenti-

ated only once, set d = 1. 

To define the seasonal component, it can be observed in 

the ACF plot shown in Figure 7 that lags 0 and 13 are signifi-

cant, so set Q = 1 is suggested. In the PACF plot shown in 

Figure 8, it can be observed that only lags 1, 13, and 26 are 

significant, so set P = 1 is suggested. Finally, set D = 0 and set 

the seasonal period s = 12 or 13. Therefore, SARIMA 

(1,1,1)x(1,0,1)12 or SARIMA (1,1,1)x(1,0,1)13  was identified 

as an initial model. 
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Based on the values determined from the ACF and PACF 

plots, different SARIMA models were tested to find the best 

fitting model by varying the values of their parameters be-

tween 0 and 2 for seasonal periods s = 12 and 13. This was 

because calculating all the possible combinations of values of 

the parameters of a SARIMA model by brute force can be 

computationally costly. 

Table 2 shows the three best SARIMA models that ob-

tained the lowest values in the AIC and BIC metrics. Of these, 

the best model was SARIMA (0,1,0) x (0,0,1)13 with an AIC = 

14.260 and BIC = 17.782. This model does not contain non-

seasonal components, nor does it contain seasonal autoregres-

sive components, so it only consists of one seasonal moving 

average component. 

 
TABLE 2 

BEST SARIMA MODELS 

Model AIC BIC  

(0,1,0) × (0,0,1)13 14.260 17.782  

(0,1,0) × (1,0,0)13 14.487 18.010  

(0,1,1) × (0,0,1)13 14.644 19.928  

 

Step 3. Parameter estimation 

In this step, the coefficient of the seasonal moving average 

component of the SARIMA model (0,1,0) x (0,0,1)13 was 

estimated. The estimation was performed with the Summary 

function of the trained model, which is an object of the 

SARIMAX class from the statsmodels.tsa.statespace.sarimax 

library. The parameter was estimated using the log-likelihood 

for the maximum likelihood estimation. The calculated coeffi-

cient was 𝛩1 = −0.3779. Figure 9 presents the summary of the 

model. 

Step 4: Diagnostic Checking 

After adjusting the SARIMA model, tests were applied to 

identify if the residual series is white noise, that is, that the 

residual errors do not show autocorrelation with time and that 

they are normally distributed. This gives evidence that the 

fitted model is suitable for forecasting. If the tests gave evi-

dence that the residual series was not white noise, it would 

indicate the need to improve the model further. 

For this purpose, the plot_diagnostics function was used, 

which presents four graphs: a) standardized residual, b) histo-

gram, c) normal Q-Q, and d) correlogram. Figures 10 to 13 

show the plots generated by this function. 

The standardized residual plot in Figure 10 indicates the 

absence of trend and constant variance with a mean approach-

ing zero. The histogram plot in Figure 11 shows that the re-

siduals follow the bell curve distribution (normal distribution). 

The normal Q-Q plot in Figure 12 indicates that most residu-

als fit a straight line which suggests that they are normally 

distributed. Finally, the ACF plot in Figure 13 indicates that 

the residuals are not autocorrelated with time. 

Additionally, the Ljung-Box Q [18] and Heteroskedasticity 

test were applied. The null hypothesis of the Ljung-Box Q test 

is that the data is distributed independently. The alternative 

hypothesis is that the data is not distributed independently. 

After applying the Ljung-Box test, the computed p-value was 

0.98, so fail to reject the null hypothesis, and it is confirmed 

that the data is distributed independently. The null hypothesis 

of the Heteroskedasticity test is that the variance of the resid-

ual series is constant, that is, not heteroskedasticity. The alter-

native hypothesis is that heteroskedasticity exists. After apply-

ing the Heteroskedasticity test, the computed p-value was 

0.66, so fail to reject the null hypothesis, and it is confirmed 

no heteroskedasticity. 

 
Fig. 9. Summary of the SARIMA model (0,1,0) × (0,0,1)13. 
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Fig. 10. Standarized residual plot of the SARIMA model (0,1,0) × (0,0,1)13. 

 

Fig. 11. Histogram plot of the SARIMA model (0,1,0) × (0,0,1)13. 

6. RESULTS AND DISCUSSION 

The forecast values of the Holt-Winters Seasonal (0.8, 0.1, 

0.0)12 and SARIMA (0,1,0) × (0,0,1)13 models were com-

pared. To compare performance, the error metrics Mean Abso-

lute Percentage Error (MAPE) and Root Mean Square Error 

(RMSE) were used, expressed in Equations (11) and (12), 

respectively. 
 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑦𝑖−𝑦�̂�

𝑦𝑖
|𝑁

𝑖=1 ,   (11) 
 

𝑅𝑆𝑀𝐸 = √
∑ (𝑦𝑖−𝑦�̂�)

2𝑁
𝑖=1

𝑁
,   (12) 

 

where: 

𝑦𝑖 is the actual value. 

𝑦�̂� is the forecast value. 

𝑁 is the number of fitted points. 

 

Fig. 12. Normal QQ plot of the SARIMA model (0,1,0) × (0,0,1)13. 

 

Fig. 13. Correlogram plot of the SARIMA model (0,1,0) × (0,0,1)13. 

The dataset was divided into 80% for training and 20% for 

testing the models. The forecast values estimated by each 

model were compared against the real values of the test set, 

and the RMSE and MAPE metrics were used to measure the 

error. Table 3 shows the comparison of the results of the 

RMSE and MAPE metrics. Figures 14 and 15 show the fore-

cast values generated by the Holt-Winters Seasonal and 

SARIMA models, respectively. 

TABLE 3 

COMPARATIVE RESULTS 

Model RMSE MAPE AIC BIC 

SARIMA (0,1,0) × (0,0,1)13 7.55 15.09 14.260 17.782 

Holt-Winters (0.8,0.1,0.0)12 40.03 95.88 212.880 238.217 
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As can be seen in Table 3, the SARIMA (0,1,0) × (0,0,1)13 

model had the best performance since it obtained the lowest 

values in the RMSE and MAPE metrics. Additionally, it is 

worth mentioning that this model also obtained the lowest 

values in the AIC and BIC metrics with 14.260 and 17.782, 

respectively, against 212.880 and 238.217 obtained by the 

Holt-Winters Seasonal model.  

Because the historical data provided by the warehouse 

was grouped monthly as mentioned above, the dataset corre-

sponding to the time series used was generated with 45 obser-

vations. Despite being few observations, it can be seen from 

the results that the SARIMA models shown in Table 2 are 

better than those obtained by the Holt-Winter Seasonal mod-

els shown in Table 1. The possible cause of the Holt-Winter 

Seasonal models could not achieve a better performance could 

be that they could not adequately capture the seasonality of 

the time series due to the few observations in the dataset, 

which could indicate that the SSE value was set to 0. 

7. CONCLUSIONS 

In this work, the case of an assembly plant located in Cd. 

Juárez, Chihuahua, to forecast the future demand of one of the 

parts of the inventory was presented. Historical data between 

January 2017 and September 2020 was used. 

Different Holt-Winters Seasonal and SARIMA models 

were implemented to forecast demand since the data exhibits 

trend and seasonal effects. 

For the implementation of the SARIMA models, the Box-

Jenkins methodology was used. As selection criteria for the 

best Holt-Winters Seasonal and SARIMA model, the AIC and 

BIC metrics were used. The selected models were Holt-

Winters Seasonal (0.8,0.1,0.0)12 and SARIMA 

(0,1,0) × (0,0,1)13.  

RMSE and MAPE metrics were used to determine the 

model that makes the most accurate forecasts. 

The metrics indicate that the SARIMA model has a better 

performance than the Holt-Winters Seasonal model since it 

manages to better fit the predicted data of the time-series of 

the used part. 

The results provide evidence the SARIMA model fits the 

data well when forecasting the demand for inventory parts. 

Based on the above, applying the SARIMA model to all 

the parts to know their future demand could lead to a better 

strategic relocation in the warehouse and, thus, facilitate the 

picking process. 

 
Fig. 14. Forecast values by Holt-Winters Seasonal (0.8,0.1,0.0)12 model. 

 
Fig. 15. Forecast values by SARIMAX (0,1,0) × (0,0,1)13 model. 
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