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Abstract—Hierarchical spatial data structures are usually em-
ployed for indexing geometric objects and are characterized by
recursively decomposing the space. Due to this recursion process
is necessary to define a decision criteria to determine when
to stop the process of spatial decomposition. In this paper, a
new recursion threshold for indexing hierarchical spatial data
structures that is independent of the nature of the data is
introduced. The objective is to reduce the execution time of space
searches that arise in various applications of modern computing
systems such as mining, solid modelling, simulation and others.
Results indicate that the proposed recursion threshold reduces
the execution time of space searches respect to others criteria
of general purpose reported in the literature, however, RAM
consumption is increased considerably.

Index Terms—execution time, recursion threshold, spatial data-
structure.

I. INTRODUCTION

ODERN software systems are increasingly important

to the development of human activity. Nowadays these
systems implements several complex operations from a com-
putational point of view related to spatial and time consump-
tion indicators. Among these operations are the diminution
of the computational cost when processing a geological block
model!, the estimation of mineral resources and the calculation
of the mineral concentration located within two surfaces which
are common operations of any mining software system.

In the problem of reducing the computational cost of
processing a block model [1], a calculation of the mineral
concentration and economic cost for each block is made. This
is done as part of an optimization process to design an open
pit mine. Here the goal is to maximize profits and to select
the proper blocks for mineral extraction while the physical
boundaries of the pit mine, usually with the shape of a regular
inverted cone, are defined according to geometric constraints
as illustrated in Figure la.

The time complexity required for finding the best combina-
tion of blocks using brute force is 2 where n is the number
of blocks and since there is a spatial relation between blocks
and a geometric constraint in the physical boundaries of the
mine pit, this problem can be seen as a spatial search problem.
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In the estimation of mineral resources operations, Figure
1b, there is an interest in calculate the value of the mineral
concentration in a spatial region from which there is not
any explicit measure. In order to obtain the mentioned value,
a spatial search is performed around the region of interest
and all measurements are considered as inputs for a spatial
interpolation method that makes an estimation according to
the values of the k-nearest neighbours. According to [2] the
time complexity required to perform a k-nearest neighbours
search using a naive algorithm for n query point is in the
order of n? which is expensive.

Another example of the operations performed in modern
mining software is showed in Figure Ic and is a special
case of a spatial range search. In the figure, a calculation of
the value of the mineral concentration within two surfaces
represented by polygonal meshes is required. In order to
do this, mining systems computes the intersection between
meshes components and a search volume. This operation has a
linear time complexity but still expensive since the intersection
tests usually require a lot of computational effort.

(a) (b) (©

Fig. 1: Common spatial operations performed in the actual
mining software.

In addition to the previous mentioned issues, there are other
operations performed by modern software systems focused
in tridimensional visualization that can be treated as spatial
search problems. In order to achieve a higher performance
of software and hardware, several methodologies have been
developed, but usually the great amount of data and the
complexity of the implemented operations leads to compu-
tational burden [3]. An open issue in this research field can be
identified and it states as follows: how to reduce the execution
time of spatial queries?

II. SPATIAL SEARCH OPERATIONS

Spatial queries can be classified according to its basement:
query based in phenomena and query based in location [4].
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Spatial queries based in phenomenon makes use of a semantic
criterion associated to data to satisfy some constraint, while
spatial queries based in location only makes use of geometric
descriptions of the spatial data. In the latest years, the effort
related to the diminution of the time complexity of spatial
queries based in location have been intense because this kind
of spatial query are context-independent?. In recent investi-
gations two fields can be identified: parallel computing and
spatial data-structures.

Despite parallel computing has showed good results in many
application fields, there are several limitations related to the
mandatory requirement of specific hardware and the difficulty
of writing concurrent code. Until now, several spatial data-
structures with the objective of performing spatial queries have
been proposed: the Binary Space Partitioning trees (BSP), the
Kd-trees, the R-tree and the quadtrees.

III. HIERARCHICAL SPATIAL DATA-STRUCTURES

A spatial data-structure organizes geometric objects located
in a dimensional space M according to some geometric and
spatial constraint. According to [5] the organization of a spatial
data-structure is usually hierarchical and its construction is
based on recursive decomposition of space. Recursive decom-
position of space refers to a systematic subdivision of a space
in two or more subsets M, according to Equation 1.

M=DMU..UMyi#4,0<ij<n (1)

Given the previous definition, a set of geometric objects can
be partitioned in a set of discrete adjacent elements. These
elements are usually primitives and can have different shape,
size, position and orientation. For tridimensional spaces, the
most common of these primitives are boxes and when are
used, it’s a regular decomposition process because boxes are
uniform in shape, size and orientation [6]. Figure 2a shows a
bidimensional space regularly partitioned through squares.

An example of non-regular space partitioning process is the
resulting from the indexation of a BSP tree like Figure 2b. On
its simplest form, a BSP tree use a line to divide the space
in two subregions and then reorganize the geometric objects
according to its position respect that line [4]. The process is
repeated recursively until a condition is met. The previously
mentioned condition is also known as stopping criteria or in-
dexation criteria of the recursive space decomposition process
and determines when to continuing subdividing the space or
not.

The recursive space partitioning process defined by a
Quadtree is an example of a regular one. With a Quadtree
, space is subdivided by squares in four subregions of equal
size and then geometric objects are reorganized according to
its position respect to the corresponding portion of space [7].
Like BSP trees, Quadtrees recursively continue subdividing
the space until a condition is met.

As can be expected, there are more complex variations
for BSP trees [8], [9] and Quadtrees [10], [11], [12]. BSP

2Context-independent means that is not necessary to use semantic informa-
tion associated to the spatial data, but only their geometric description
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Fig. 2: Regular and no regular recursive space particioning
process.

trees can be used for dimensional spaces higher than two
by using planes in R* and hyperplanes in R* for k > 3
also known as Kd-trees. Additionally, BSP trees can be Axis-
Aligned and Polygon-Aligned when the subdivision line or
plane is aligned to the axes of the coordinate system or not
respectively. Quadtrees also have several variations used in R*
named Octree and Hyperoctree in R* for & > 3. In all cases a
sort of recursion threshold or indexing criteria must be defined
and according to [13] the setup of this recursion threshold has
a direct impact in the ability of these spatial data-structure for
solving specific problems.

For precise mathematical description, an Octree exhaustive
definition will be given and in the following section, common
studied recursion thresholds for Octrees will be enunciated
although it can be generalized for BSP, kd-trees and others
hierarchical spatial data-structures. Octrees were proposed for
first time by [14] and extensively studied by [15]. On it’s
general form, an Octree is a tridimensional approximation of
an object by a set of boxes. According to [16], given an Octree
O, a set of geometric objects S contained in a restriction
volume V associated to O and v({O, S,V}) — 0,1 a function
that determines if the Octree O should be partitioned or not;
the formal definition of an Octree is as enunciated in Equation
2.

if |S]=0

if v(0,8,V) =1

in other case

2

In Equation 2 the construction process of an Octree O stops
if their restriction volume does not contain any geometric
object or if the threshold function have been satisfied. In any
other case space is recursively partitioned into eight subregions
O; calculating V; and S;.

0
0

1
2
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A. Recursion threshold for hierarchical spatial data-structures

According to [13] the setup of the recursion threshold
has a direct impact in the ability of spatial data-structure
for solving specific problems. The recursion threshold has
a direct influence in the amount of nodes generated in the
hierarchical structure that at the same time determines the
amount of recursions needed to process a spatial query. The
behaviour for the time complexity in these structures is usually
logarithmic while the search executes in the branches of the
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hierarchical structure and is linear when search is inside a
specific node. Despite the importance of this configuration
parameter, according to [13] very few have been written about
this. Some applications can be seen in [17], [18].

In [19] for example a stopping criterion for an Octree
construction is defined based on a priory knowledge in ra-
diative transfer simulation but this stopping criteria can not be
generalized to other fields. In [20] an Artificial Neural Network
(ANN) is proposed to calculate an information value index
that evaluates if to continue subdividing an Octree box given
a specified threshold. However, very little information is given
about this process, or about how to train the ANN or what kind
of test were executed with this novel methodology. A review
of the state of the art about recursion threshold functions reveal
that there are three main criteria:

¢ Recursion level(«). The generation of nodes will con-
tinue until the level of a node O in the hierarchical
structure gets higher than .

o Volume of the region(3). The generation of nodes will
continue until the volume of a region assosiated to a node
O gets under S.

o Number of geometric objects(d). The generation of
nodes will continue until the number of geometric objects
assosiated to a node O gets under 6.

Each of the previously mentioned indexation criteria has
their own advantages and disadvantages and their adjust is
context-dependent. This means that depending of the structure
of the data to index, the spatial data-structure will be sensi-
tive to formation of clusters and over generation of nodes.
In the following section a novel indexation criteria will be
introduced.

B. Meta-heuristic coefficient for indexing geometric objects in
hierarchical spatial data-structures

Meta-heuristic refers to the use of some sort of experience
or prior knowledge to approximate an acceptable solution
to a given problem. Actual knowledge allows deducing that
decision about when to stop the space partitioning is related
to the size of the region to subdivide, the amount contained
geometric objects and to the times that the space has been
subdivided. These factors match with indexation criteria seen
in Section III-A.

In Equation 3 function « from Section III is defined as a
new indexation criteria that establish a direct relation between
the volume of a region associated to Octree O and number
of geometric objects associated to O. At the same time the
new indexation criteria establish an inverse relation with the
recursion level of O.

1 if e < ¢ x Bt

(0,8, V) = 3)
0  otherwise

In Equation 3, o(V) calculates the volume value for the
restriction volume V' associated to Octree O, S is the set
of geometric objects contained in V. Index € represents the
recursion threshold and its value depends of factors: restriction
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volume, amount of geometric objects and depth of the node
0.

Small values of ¢ increments the chance of subdivision of
a node. When a node is subdivided, its children have less
volume, less number of geometric objects and a higher value
for their level in the hierarchical tree structure. Because of that,
the chance of subdivision is smaller. The values for € factor
can be normalized between 0 <= e¢ <= 1 with Equation 4
with 0 < € < 1. In Equation 4 V., is the restriction volume
associated to the root node and S,..: is the set of geometric
objects contained in V,.,p¢.

f(G) - ‘Sroot| X U(W‘oot) X € (4)

Factor ¢ controls the influence of factors |S| x o(V) and
6(0). For values of 0 < ¢ < 1 importance to factor
6(0) is granted, causing that the node has fewer chances
of subdivision and the generation of children gets decreased.
For values of ¢ > 1 factor 6(O) gets less importance and
the generation of children is bigger. Factor ¢ can be used to
balance the effects of time and spatial complexity.

IV. RESULTS AND DISCUSION

The following section describes a set of tests conducted to
measure the time and memory consumption of spatial queries
while using an Octree and a specific indexation criteria. Input
data consist in point clouds randomly generated using a normal
distribution with mean of 500 thousand and typical deviation
of 200 thousand. A point cloud is a set of tridimensional points
in the space, defined by X, Y, and Z coordinates, and often
are intended to represent the external surface of an object.
The generated point clouds has different sizes, starting with
100 thousand points until 2 millions points.

An Octree pointer variation data-structure was implemented
in C++11 programming language [21]. Tests were executed in
Xubuntu 14.04 operating system using a Core i3 microproces-
sor and 4 Gb of RAM. The implemented Octree can construct
an index given a point cloud using the indexation criteria
specified in Section (III-A, III-B). An orthogonal spatial search
was also implemented as described in Algorithm1 using a box
as V' parameter.

Algorithm 1 Orthogonal spatial search.

1: function SEARCH(V: Search volume, O : Octree)
2: R: Geometric Objects List;
3 if INTERSECTION(V, O.V) = True then

4: if O.ISLEAF = True then

5: R < R+ INTERSECTION(O.S, V);
6: else

7: fori=1..8 do

8: R + R+ SEARCH(V, 0.0,);
9: end for

10: end if

11: end if

12: return R;

13: end function
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Algorithm 1 takes two parameters, the search volume V'
and an Octree O. Procedure first determines if the restriction
volume associated to O intersects with V. If this condition is
not met then no other computation is performed and there is
not other geometric object contained in V. Otherwise, if O is
leaf, procedure computes the intersection of each geometric
object with V, if O is not leaf, spatial search procedure is
called for each node of O.

First thing to do is to configure the threshold for indexation.
The time consumption for a spatial search using Octree has a
direct relation with the indexation criteria and the volume of
data, so this parameter must be adjusted to each specific data
volume. Using this adjustment, a calculation of the time con-
sumption of an orthogonal search for each indexation criteria
is made in different scenarios. All measures are calculated as
the average of 100 thousand orthogonal searches. At the same
time, the number of generated nodes is calculated as a measure
of RAM consumption for each indexation.

The setup of the recursion threshold is made using index-
ation criteria previously defined. For each indexation criteria
the threshold value is considered as follows: 10'* < 8 < 106
with step of 2 x 10'* volumetric units, 0 < § < 50000 with
step of 500 geometric objects and 0 < ¢ < 1 with step 0.01
and ¢ = 100.

For example, using a point cloud of 100 thousand objects,
the best scenario for 0 is § = 500 geometric objects and the
worst scenario is § = 12000 as can be seen in the red line
of Figure 3. However, this configuration does not stand for 2
millions objects where the best scenario for § is § = 1000 and
the worst scenario is § = 43500 as can be seen in the blue
line of Figure 4.
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Fig. 3: Time consumption for different threshold (4) using 100
thousand points (red)

A. Performance for best scenario

The objective of the following test is to measure the time
and spatial consumption for best scenario of defined recursion
thresholds. Figure 5 shows the time consumption for threshold
(B) red, threshold (§) blue and threshold (¢) black for each
volume of data.

As can be seen in Figure 5 and 6 threshold € performs better
than other indexation criteria for each data volume tested in
the best possible scenario. Considering threshold /3 threshold
¢ decreases the time consumption in 1.6 x 10* microseconds
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Fig. 4: Time consumption for different threshold (§) using 2
millions points (blue).

as average and 8.7 x 10® microseconds considering threshold
0 . Figure 5 also shows the number of generated childs for
each indexation criteria for different data volumes in the best
scenario. Results indicate that the use of the new indexation
criteria in the best scenario needs more memory space in RAM
than others recursion thresholds.
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Volume of data 10°

Fig. 5: Time consumption and children generation for different
data volume using threshold (53) red, threshold (6) blue and
threshold (¢) black.
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Fig. 6: Another view of time consumption and children
generation for different data volume using threshold (3) red,
threshold (&) blue and threshold (¢) black.
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B. Performance for worst scenario

The objective of the following test is to measure the
time and spatial consumption for worst scenario of defined
recursion thresholds. Figure 7 shows the time consumption for
threshold (B) red, threshold () blue and threshold (¢) black
for each volume of data.

As can be seen in Figure 7 threshold e performs better than
other indexation criteria for each data volume tested in the
worst possible scenario. Considering threshold 3 threshold e
decreases the time consumption in 2.99 x 10* microseconds as
average and 18.49 x 10® microseconds considering threshold
J.

In Figure 7 and 8 also shows the number of generated nodes
for each indexation criteria for different data volumes in worst
scenario. Results indicate that the use of the new indexation
criteria in the worst scenario also needs more memory space
in RAM than others recursion thresholds.
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Execution time (psec)

0.00

Volume of data 10°

Fig. 7: Time consumption and child generation for different
data volume using threshold () red, threshold (9) blue and
threshold (¢) black.
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Fig. 8: Another view of time consumption and child generation
for different data volume using threshold () red, threshold (§)
blue and threshold (¢) black.

V. CONCLUSION AND FUTURE WORK

In this paper a new recursion threshold is proposed for
indexing geometric objects using hierarchical spatial data-
structures. The main contribution is a novel heuristic based

https://doi.org/10.17562/PB-56-9 69

threshold that performs better than other indexation criteria
proposed for general data. Experiments show that considering
threshold S threshold e decreases the time consumption in
1.6 x 10* microseconds as average and 8.7 x 10% microseconds
considering threshold § when configuring parameters to the
best possible scenario. The results remain positive even when
the worst scenario is considered: considering threshold /3
threshold ¢ decreases the time consumption in 2.99 x 10*
microseconds as average and 18.49 x 103 microseconds con-
sidering threshold d. However the proposed threshold tends to
generate more nodes in the hierarchical structure.

As future work, an investigation of the ¢ factor is required
in different scenarios with the objective of reducing the space
complexity of the proposed indexation criteria and more
experiments have to be carried out in order to define new
scenarios. We also pretend to investigate the effect of the re-
indexation when considering our proposed method.
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