

Editorial

T is my pleasure to present the readers a new issue of the

Polibits journal. This issue of Polibits includes 10 papers by

authors from 10 different countries: Australia, Chile, Ecuador,

Germany, Hungary, Mexico, Portugal, Spain, Sweden, and

USA. The majority of the papers included in this issue are

devoted to various topics within Artificial Intelligence,

probably the widest and most actively growing area of

computer science nowadays.

The first five papers of this issue are devoted to one of the

most fundamental problem in Artificial Intelligence and in

general in science: logical reasoning and knowledge

representation.

David Sundgren and Alexander Karlsson from Sweden

address a problem of reasoning under uncertainty, which is of

great importance in Artificial Intelligence. They analyze the

phenomenon of second-order probability: uncertainty, in the

form of probability, about the probability of an event. First-

order probability reflects our knowledge about an event. For

example, suppose we have a fair die; then in the next throwing

all numbers are equally probable. Suppose now we have an

unfair die that always shows the same number, but we don’t

know which. Then again, the probability of seeing all

numbers at the next throwing are all equal. Now, second-order

probabilities reflect our knowledge about the distributions of

events. In our example, in the case of a fair die there is only

one option: an equal distribution of numbers. However, in the

case of unfair die, there are six options: it can always show

the number 1, or always the number 2, etc.; since we have no

information about this particular die other than that it is

unfair, all six options are equally probable. The authors study

the uncertainty levels that appear in reasoning with second-

order probabilities.

Chaman L. Sabharwal et al. from the USA study

intersection of triangles in frame of qualitative spatial

reasoning. Triangles are basic shapes used both in

mathematics (triangulation in the homology theory) and

computer science to represent more complex spatial objects.

Detecting intersections between spatial objects is useful for

their computational modeling, for example, in CAD / CAM

systems. The author describe rather complex logic resulting

from intersections of these basic shapes in spatial

combinatorics.

Irosh Fernando and Frans A. Henskens from Australia

introduce an algorithm for the use of the Select and Test

reasoning model in medical expert systems. They give a

detailed pseudo-code for their algorithm and even

implementation of its most important parts in Java. Their

algorithm involves a bottom-up and recursive process with

logical inferences, abduction, deduction, and induction. An

example small knowledgebase is also given.

Guida Gomes et al. from Portugal analyze various factors

and events that can lead to deterioration of buildings and are

thus important to know in order to determine a correct

strategy for repairing. They use logic programming approach

for knowledge representation and reasoning about these

events and factors. Specifically, they extend the Eindhoven

Classification Model and adapt it to the area of conservation

and maintenance of buildings and its causal tree.

Juan Carlos Nieves and Helena Lindgren from Sweden

show how to consolidate heterogeneous knowledge sources

for decision making and reasoning, for example, about

medical diagnosis. They present an algorithm capable to

merge deductive and abductive knowledge bases. They

explore an argumentation context approach, which follows the

way medical professionals typically reason in order to merge

two basic kinds of reasoning approaches: deductive and

abductive inferences. For this, they introduce two kinds of

argumentation frameworks: deductive argumentation

frameworks and abductive argumentation frameworks, and

merge the corresponding knowledge sources using an

approach based on argumentation context systems.

The next two papers show how computer modeling can be

usefully applied in economy domain, such as forecasting of

economic activity and modeling of economic processes.

Nibaldo Rodriguez and Jose Miguel Rubio L. from Chile

and Lida Barba from Ecuador present a forecasting strategy

based on stationary wavelet transform combined with radial

basis function (RBF) neural network. As a case study, they

apply this strategy to improve the accuracy of 3-month-ahead

hake catches forecasting of the fisheries industry in the central

southern Chile. Their forecasting model decomposes the raw

data set into an annual cycle component and an inter-annual

component by using 3-levels stationary wavelet

decomposition. The components are independently predicted

using an autoregressive RBF neural network model. The

utility of the proposed model is demonstrated on hake catches

data set for monthly periods from 1963 to 2008.

Borja Ponte et al. from Spain address an important

economic problem, which is a major concern for companies

nowadays: supply chain management. The Bullwhip Effect,

related to the amplification of the demand supported by the

different levels, is a major cause of inefficiency in the supply

chain. The authors present an application of simulation

techniques to the study of the Bullwhip Effect in comparison

to modern alternatives such as the representation of the supply

chain as a network of intelligent agents. They show that the

I

3 Polibits (48) 2013ISSN 1870-9044

supply chain simulation is a particularly interesting tool for

performing sensitivity analyses in order to measure the impact

of changes in a quantitative parameter on the generated

Bullwhip Effect. A sensitivity analysis of safety stock

illustrates the relationship between Bullwhip Effect and safety

stock.

The last three papers are devoted to yet another major area

of artificial intelligence: natural language processing. Two of

these papers address an emerging and very active area or web

opinion mining, and the remaining one introduces a new kind

of feature useful for classification tasks.

Melanie Neunerdt et al. from Germany present a technique

to train a part-of-speech tagger on real comments left by the

users on social media websites. The importance of the

analysis of user-contributed contents in social media stems

from the huge quantity of such texts, from which user’s

opinions about products, companies, political parties, or

events can be successfully mined. Knowing this information

presents better quality of life for consumers, better income for

businesses, and real-time democracy for the governments.

However, the grammar and style of such texts greatly differs

from the grammar and style of traditional sources such as

books or newspapers. The majority of existing natural

language processing tools is tailored for traditional language

and not for web social media. The authors show how a part-

of-speech tagger can be trained on real web social media

texts. The work described in this paper has received third

place best paper award at the 12th Mexican International

Conference on Artificial Intelligence, out of 284 submissions

from 45 countries.

Grigori Sidorov from Mexico discusses an extension of the

syntactic n-gram feature space suggested earlier by him and

his co-authors. The extension consists in allowing bifurcations

in the traversal of the syntactic tree when forming syntactic n-

grams. Syntactic n-grams has been previously shown to be a

useful tool in classification tasks such as author identification

or plagiarism detection. Numerous examples of forming the

syntactic n-grams with bifurcations are given, and a way of

their representation in plain text is described.

Finally, István Endrédy and Attila Novák from Hungary

present a novel algorithm for removing unimportant

information from webpages. Huge body of useful information

can be mined from webpages, such as user’s opinions about

products or political parties. However, analysis of webpages is

hindered by a large amount of text and images, such as

advertising, formatting, styling, pointers to other articles and

webpages, etc., unrelated to the main contents of the webpage

and usually automatically added by the webserver. Removing

such overhead and leaving only the important contents of

webpages for subsequent analysis is a very important practical

task. The authors improve over existing algorithms for this

task. They also present a new gold standard corpus for

evaluation of text cleaning algorithms.

Ildar Batyrshin

Research Professor,

Instituto Mexicano del Petróleo, Mexico

Treasurer,

Mexican Society of Artificial Intelligence

4Polibits (48) 2013 ISSN 1870-9044

Uncertainty Levels of Second-Order Probability
David Sundgren and Alexander Karlsson

Abstract—Since second-order probability distributions assign
probabilities to probabilities there is uncertainty on two levels.
Although different types of uncertainty have been distinguished
before and corresponding measures suggested, the distinction
made here between first- and second-order levels of uncertainty
has not been considered before. In this paper previously existing
measures are considered from the perspective of first- and
second-order uncertainty and new measures are introduced. We
conclude that the concepts of uncertainty and informativeness
needs to be qualified if used in a second-order probability context
and suggest that from a certain point of view information can
not be minimized, just shifted from one level to another.

Index Terms—Uncertainty, entropy, second-order probability.

I. INTRODUCTION

REASONING under uncertainty is a fundamental problem
within artificial intelligence. In this probability is an

important tool, but in real life situations there is often
uncertainty regarding the probability values themselves.
Second-order probability, see e.g. [1], [2], [3], is an
hierarchical model of imprecise probability that can be
used to model different types of uncertainty regarding
first-order probability distributions, e.g., in terms of their
quality [4]. Just as in e.g. the possibilistic hierarchy [5],
the epistemic reliability model [4] or fuzzy probabilities [6],
probability distributions are discriminated by weights. In the
case of second-order probability the weights are themselves
probabilities. Where there are probability distributions there is
uncertainty, with a second-order distribution there is then the
uncertainty that comes with the second-order probabilities but
also the uncertainty of the first-order probabilities.

Thus it is meaningful to distinguish different types of
uncertainty, and in the limits of uncertainty, ignorance and
uninformativeness. As is pointed out in [7] ignorance comes
in different forms, and E. T. Jaynes wrote in [8] that ‘A
major thing to be learned in developing this neglected half
of probability theory is that the mere unqualified epithet
“uninformative” is meaningless.’

A. Levels of Uncertainty in Dempster-Shafer

In the literature on Dempster-Shafer theory [9] there is
in e.g. [10] a distinction between two types of uncertainty,
dissonance and nonspecificity. Shannon entropy is in [10]

Manuscript received on June 27, 2013; accepted for publication on
September 30, 2013.

David Sundgren is with the Department of Computer and Systems Sciences,
Stockholm University, Sweden (e-mail: dsn@dsv.su.se).

Alexander Karlsson is with the Informatics Research Center, University of
Skövde, Sweden (e-mail: alexander.karlsson@his.se).

mentioned as an example of a measure of dissonance but
not nonspecificity; beliefs expressed in terms of probability
distributions are dissonant. Dissonance pertains to probabilistic
uncertainty and in e.g. [11] an entropy like measure for
dissonance (or discordance) of the basic assignment functions
of [9] is introduced. On the other hand nonspecificity is in [10]
described as increasing with the number of alternatives in
a decision situation and the Hartley measure is put forward
as the appropriate measure of nonspecificity. In [12], the
measures for discord and nonspecificity are aggregated into
total uncertainty, see also [13] for a more recent account of
uncertainty measures in evidence theory.

Since second-order probability is not equivalent to
Dempster-Shafer theory the uncertainty measures designed for
belief functions are not directly applicaple to second-order
distributions. Yet, in [14] there is a discussion of how
second-order distributions could be interpreted in terms of
nonspecificty. Smithson [14] recounts the situation in [15]
where Miss Julie is invited to bet on the outcomes of three
tennis matches in terms of second-order probability. In match
A it is known that it will be an even match; in terms of
first- and second-order uncertainty there is no second-order
uncertainty and maximum first-order uncertainty in match
A. Nothing is known about match B and Smithson [14]
suggests that the second-order distribution be a uniform
distribution spanning the [0, 1] interval, in this case both first-
and second-order uncertainty is high but it is questionable
whether any second-order distribution can model the ignorance
regarding match B. As regards to match C Miss Julie knows
that one of the players is excellent and the other an amateur
but she does not know which one is the better player, in
this case there is no first-order uncertainty but maximum
second-order uncertainty. The corresponding second-order
distributions could be described as follows in the terms used
in the sequel of this paper: In match A we say that the
second-order distribution is determined by p(x1 = 0.5, x2 =
0.5) = 1, in match C we could have the second-order
distribution p(x1 = 1, x2 = 0) = 0.5, p(x1 = 0, x2 = 1) =
0.5. The case of match B is probably not possible to fully
specify with second-order distributions.

According to Smithson [14] B is the most nonspecific
situation, C is more specific than B and A is considered to
be “quite specific”. With respect to B there are two different
approaches; either use a uniform second-order distribution as
advised in [14] or refuse to express the uncertainty of B with
a second-order distribution. In the first case there is some
first-order uncertainty since there is positive probability for
high-entropy points. Inasmuch the second-order distribution

5 Polibits (48) 2013ISSN 1870-9044; pp. 5–11

assigns belief to points that are far apart there is a high
second-order uncertainty but belief in neighboring points
reduce second-order uncertainty to be less than maximal.

Comparing nonspecificity with first- and second-order
uncertainty, if match B after all is represented by a
second-order distribution B would be between A and C
along both the first- and second-order uncertainty scale while
being the most nonspecific, indicating that first-/second-order
uncertainty and dissonance/nonspecifity are independent
measures. If on the other hand B is left out for being
impossible to be modelled with a second-order distribution,
dissonance would have positive correlation to first-order
uncertainty.

Even though we discuss uncertainty measures for
second-order probability rather than for Dempster-Shafer
theory there would be a parallell in that what we call first-order
uncertainty could be seen as probabilistic just as dissonance
is. Second-order level uncertainty could correspondingly
described as deterministic.

B. Probabilistic and Deterministic Uncertainty

The distinction might be clarified with an example. Say
that we want to express ignorance as to the outcome of an
experiment with a second-order probability distribution. One
possibility is to assign all second-order probability to the
maximum entropy distribution where all outcomes are equally
probable. This way we would express ignorance on what could
be called the first-order level. But on the second-order level
we are absolutely certain, there is no doubt which first-order
distribution is the proper one, all uncertainty if placed on
the level of first-order probabilities. This situation might be
described as being certain of being uncertain. On the other
hand we could express ignorance by the uniform second-order
distribution on the zero entropy distributions where one of
the outcomes is certain. In a first-order perspective there is
no uncertainty, distributions with positive entropy are not
considered, however we would know no more about the
outcome of the experiment. The uncertainty remains but now
entirely on the second-order level, you might say that in this
case we are uncertain of being certain.

To make the experiment tangible, consider throwing a
die. The second-order distribution mentioned first, where all
second-order probability is assigned to the uniform distribution
(1/6, 1/6, . . . , 1/6) could be employed to express certainty
in that the die is fair. But if a uniform second-order
distribution is put on the six zero-entropy distributions
(1, 0, . . . , 0), . . . , (0, . . . , 0, 1) this would mean that we know
for certain that the die is fixed to always show the same number
but we have no idea which one. A possible interpretation in the
realm of philosophy or psychology could be that the first type
of second-order distribution could be used by someone who
believes in the fundamental randomness of everything but the
other type is suitable for an ignorant1 determinist. These two

1The term is of course not used in a derogatory sense.

second-order probability distributions are extreme examples
and other second-order distributions could represent mixtures
of the two types of ignorance. The point is that ignorance is not
enough to specify a second-order distribution unambiguously.
And even given the distribution of uncertainty between the
two levels it is not obvious how to measure uncertainty.

Mork [16] has performed an extensive study on how
uncertainty could be measured from credal sets and from
second-order probability distributions. He introduced an
entropy based uncertainty measure called GSU (Gärdenfors-
Sahlin uncertainty) after [4]. Entropy has also been
applied to interval-based imprecise probabilities (i.e., without
second-order information) [17]. In this paper we will use
entropy as a basis for a majority of our uncertainty measures.
By using simple numerical examples, we will contrast the
result of our measures to previous measures found in the
literature.

In particular, we show that uncertainty measures for
second-order probability distributions can be constructed
in various ways, and that there are seemingly reasonable
requirements on uncertainty measures that are not always met
for the measures we discuss. We suggest that uncertainty
in a second-order probability setting needs to be qualified
in order to be measured consistently. There are likely many
aspects with which to specify what is meant by uncertainty
for second-order distributions, but whether uncertainty is
measured on the first- or second-order level, or both, appears to
be a relevant specification. To our knowledge the only previous
uncertainty measure for second-order probability that could
be said to cover both levels is the GSU measure of [16].
We here introduce a measure for aggregated uncertainty that
decomposes naturally into first and second-order levels.

C. Definitions and Notation

Let the outcome space Ω have a finite number of elements n,
Ω = {si : i = 1, . . . , n}. What we call first-order probabilities
are the probabilities of the n outcomes and second-order
probability distributions are probability distributions with
first-order distributions as random variables. That is, any
probability can be seen as a first-order probability, but
second-order probability is probabilities over probabilities.
Since we are more interested in the probabilities of outcomes
rather than the outcomes themselves, we denote the probability
Pr(si) by xi, i.e. all xi are first-order probability values,
0 ≤ xi ≤ 1,

∑n
i=1 xi = 1. All marginals mentioned below

are one-dimensional marginal probability distributions.
Further, to simplify computations we restrict the first-order

probability values to rational numbers, xi = ki/N ,
where

∑n
i=1 ki = N . A probability distribution will

then be considered as a vector x = (x1, . . . , xn) =
(k1/N, . . . , kn/N). Let X denote a set of first-order
probabilities x where the marginals are rational numbers.

6Polibits (48) 2013 ISSN 1870-9044

David Sundgren, Alexander Karlsson

Furthermore, let us define the set:

XN =

{
x : x = (k1/N, . . . , kn/N),

n∑
i=1

ki = N, ki ∈ N

}
i.e., the set of all first-order probabilities in the form of rational
numbers that fulfill

∑n
i=1 ki = N . For every N , XN is

finite so we are therefore restricted to discrete second-order
probability distributions over first-order distributions. That is,
the discrete second-order probability distributions discussed
here have XN as outcome space. Second-order probability
distributions are denoted p, and the probability of first-order
probability distribution x ∈ XN is then p(x). The marginal
probability of first-order probability value xi is written pi(xi).
We remind of the definition of Shannon entropy

H(x) = −
n∑
i=1

xi log2 xi .

II. FIRST-ORDER UNCERTAINTY

As we have argued we may distinguish two levels of
uncertainty. The term first-order uncertainty is intended to
capture uncertainty on the level of first-order probabilities
in the context of a second-order probability distribution.
In other words, first-order uncertainty is the type of
uncertainty expressed by probababilities of unknown outcomes
of an event. In the absence of second-order probability an
uncertainty measure such as entropy would be used, but
here we have second-order probability distributions to account
for. In this section we present one way of measuring such
first-order uncertainty.

Weighted entropy. This uncertainty measure intends to
capture the collected amount of entropy in the first-order
probability values. Since a second-order distribution assigns
probability values to the first-order variables, the entropy
values are weighted accordingly. That is, the more probable a
vector x is, the more weight we give to its entropy.

WH(X, p) =
∑
x∈X

p(x)H(x) = −
∑
x∈X

p(x)

n∑
i=1

xi log2 xi .

III. SECOND-ORDER UNCERTAINTY

These measures are meant give the degree of uncertainty
on the second-order level. For instance, if all second-order
probability is given to low entropy points there could still
be a high degree of uncertainty in that there is little or no
commitment to any one particular outcome.

We have found three basic approaches to second-order
uncertainty, one is the entropy of the second-order
probability distribution, the other one is based on how
much the second-order distribution is spread out. The latter,
distance-based measures are justified by the intuition that
uncertainty could be expressed by conflicting statements. The
third measure considers the volume of the support of the
second-order distribution.

Entropy. This measure is simply the entropy H(p) of the
second-order distribution:

H(X, p) = −
∑
x∈X

p(x) log2 p(x) .

Weighted Kullback-Leibler divergence. If we want to be
able to compare second- and first-order uncertainty, we have
to use an entropy-based distance measure so that first- and
second-order uncertainty are measured in the same units. If
second-order uncertainty is linked to the spread of belief over
the probability simplex and measure entropy, we suggest the
average Kullback-Leibler divergence, see [18], to the mean
as measure of second-order uncertainty, i.e., the mean of the
second-order distribution µ = (µ1, µ2, . . . , µn), defined by
µi =

∑
x∈XN

p(x)xi is used as point of reference.

WDKL
(X, p) =

∑
x∈X

p(x)DKL(x|µ) =

∑
x∈X

p(x)

n∑
i=1

xi log2

xi
µi
.

Degree of imprecision. The degree of imprecision [19] aims
to be an approximation of the hypervolume spanned by the
first-order probability distributions with positive second-order
probability.

DI(X, p) =
1

n

n∑
i=1

[
max
x∈X̂N

xi − min
x∈X̂N

xi

]
,

where X̂N = {x ∈ X|p(x) > 0}. Note that the
computation of DI can be performed by maximizing
respective minimizing over the extreme points of the convex
hull of first-order probability distributions with positive
second-order probability.

IV. AGGREGATED UNCERTAINTY

Under this rubric we collect measures that could claim
to express the aggregated degree of uncertainty on first and
second-order level.

Mork’s GSU. The uncertainty measure introduced in [16]
is named after Gärdenfors and Sahlin and is inspired by their
discussion in [4] about epistemic reliability. The idea might
be summarized in that the information value is reduced by
adding second-order probability through a convex combination
of information values.

The measure is defined by:

GSU(X, p) = max
x∈X

{
−

n∑
i=1

[
xi
∑
x∈X

p(x) log2 xi

]}
.

Sum of WH and WDKL
. Since both the first-order measure

of weighted entropy and the second-order measure of weighted
Kullback-Leibler divergence are based on entropy of first-order
probabilities and have the same units the sum of the measures
is meaningful.

7 Polibits (48) 2013ISSN 1870-9044

Uncertainty Levels of Second-Order Probability

TABLE I
NUMERICAL EXAMPLES

Examples First- and Second-order Probability Distributions
A X = {(1/3, 1/3, 1/3)}, p(1/3, 1/3, 1/3) = 1
B X = {(32, 29, 29)/90, (29, 32, 29)/90, (29, 29, 32)/90},

∀x ∈ X, p(x) = 1/3
C X = X10, (∀x ∈ X)(Pol(x|(1/3, 1/3, 1/3))) (Perks’ prior)
D X = X10, (∀x ∈ X)(Pol(x|(1/2, 1/2, 1/2))) (Jeffreys’ prior)
E X = X10, (∀x ∈ X)(Pol(x|(1, 1, 1))) (Bayes-Laplace’s prior)
F X = {(1/6, 1/6, 2/3), (1/6, 2/3, 1/6)},

p(1/6, 1/6, 2/3) = 3/4, p(1/6, 2/3, 1/6) = 1/4
G Y = {(2/3, 1/6, 1/6), (1/3, 1/3, 1/3), (1/4, 1/4, 1/2)},

∀y ∈ Y, p(y) = 1/3
H (X,Y) = X × Y = {(x,y)|x ∈ X,y ∈ Y },

p(x,y) = p(x)p(y), p(x), p(y) from F and G.
I (X,Y) = X × Y = {(x,y)|x ∈ X,y ∈ Y },

∀(x,y) ∈ X × Y p(x,y)) = 1/6 , p(x), p(y) from F and G.
J X = {(1/6, 1/6, 2/3), (1/6, 2/3, 1/6), (7/10, 1/10, 1/5)},

p(x1) = 1/2, p(x2) = 1/3, p(x3) = 1/6.
K X as in J, but ∀x ∈ X, p(x) = 1/3.

Interestingly, the sum of WH and WDKL
equals the entropy

of the second-order distribution’s mean:
Theorem 1: WH(X, p) + WDKL

(X, p) = H(µ), where
µi =

∑
x∈X p(x)xi.

Proof:

WH(X, p) +WDKL(X, p) =∑
x∈X

p(x)

n∑
i=1

xi

(
log2

xi
µi
− log2 xi

)
=

−
∑
x∈X

p(x)

n∑
i=1

xi log2 µi =

−
n∑
i=1

(∑
x∈X

p(x)xi

)
log2 µi = −

n∑
i=1

µi log2 µi = H(µ)

V. NUMERICAL EXAMPLES

To better understand these uncertainty measures we have
applied them to some second-order probability distributions
with various intuitive uncertainty properties. Some of the
distributions have only a few points, other distributions
have support on the entire space XN , for N = 10. The
latter distributions will come from the multivariate Pólya
family [20]:

Pol(k|α) =
N !Γ (

∑n
i=1 αi)

Γ (N +
∑n
i=1 αi)

n∏
i=1

Γ(ki + αi)

ki!Γ(αi)
,

where
∑n
i=1 ki = N and αi are parameters of the

corresponding Dirichlet distribution. Note that we can obtain
a distribution over XN by Pol(k/N |α). The Pólya family
of distributions can be seen as the discrete counterpart of
the Dirichlet family and is the result of integrating out the
underlying probabilities drawn from a Dirichlet distribution in
a multinomial distribution.

Consider the examples defined by Table I (where n = 3)
and the results of applying the uncertainty measures, shown
in Table II.

The purpose of examples A and B is to how different
measures deal with two distributions that put all second-order
probability on high entropy points; on the one hand A
where the second-order distribution has support only on the
maximum entropy point, on the other B where there is a
uniform distribution on three different points that are close to
the maximum entropy. In Table II we see that H , the entropy
of the second-order distribution is the only measure that makes
much of the fact that the second-order distribution has support
on three points rather than one.

In examples C, D and E we look at symmetric Pólya
distributions with parameters 1/3 (Perks), 1/2 (Jeffreys)
and 1 (Bayes-Laplace), respectively. The first-order level
measure WH and the second-order level measure H increase
with the Dirichlet parameters while the other second-order
level measure WDKL decreases. If we interpret the Dirichlet
parameters as a measure of the amount of available data higher
parameter values would give more (first order-) probabilistic
credibility to the mean probability vector.

If the parameters are equal, the mean would be the
maximum entropy point of the simplex. In our examples
then, first-order uncertainty would increase (as does WH), and
second-order uncertainty decrease (since there is more data to
support a particular first-order probability).

We may also note that GSU gives infinite values in
these cases. This is because there are zero-valued first-order
probabilities with positive second-order probability. It could
be argued that zero-valued first-order probabilities xi should
be excluded, since the event that xi is the probability of is
impossible and does not belong in the outcome space. On the
other hand it is feasible that (on a second-order level) it is
possible but not certain that an event can not occur, i.e. that
neither xi = 0 or xi > 0 can be ruled out.

8Polibits (48) 2013 ISSN 1870-9044

David Sundgren, Alexander Karlsson

TABLE II
RESULTS OF APPLYING THE UNCERTAINTY MEASURES TO THE EXAMPLES

First-order Second-order Aggregated
Examples WH DI H WDKL

GSU H(µ)

A 1.5850 0.0000 0.0000 0.0000 1.5850 1.5850
B 1.5834 0.0333 1.5850 0.0016 1.5865 1.5850
C 0.6852 0.5682 5.5146 0.8997 ∞ 1.5850
D 0.8285 0.5682 5.8399 0.7565 ∞ 1.5850
E 1.0486 0.5682 6.0444 0.5364 ∞ 1.5850
F 1.2516 0.5000 0.8113 0.1768 2.0016 1.4284
G 1.4455 0.2500 1.5850 0.1091 1.7233 1.5546
H 2.6972 0.5000 2.3962 0.2858 3.7249 2.9830
I 2.6972 0.5000 2.5850 0.3408 3.4749 3.0379
J 1.2358 0.5333 1.4591 0.3189 2.0803 1.5547
K 1.2200 0.5333 1.5850 0.3633 2.0635 1.5833

VI. PROPERTIES

In [16] there are sets of requirements for uncertainty
measures both for credal sets and for second-order probability
distributions. Likewise there is in [21] a list of requirements
for measures of uncertainty, but designed for belief functions
(see [9]). Since the requirements of [21] do make sense
when translated to a second-order probability setting we will
consider also these, some of them also coincide with the
requirements of [16]. Please note that since belief functions
in the language of second-order probability is best translated
as lower bounds of first-order probabilities that in turn do not
determine unique second-order distributions, the translation of
properties must at times be ad hoc. Strictly speaking then, the
requirements below that are taken from [21] is to be considered
as inspired by [21] rather than literal translations.

Below we describe these requirements briefly, as far as
they can be expressed in the terms used in this paper. The
original authors have different notation, and in the case
of [21] information is carried by belief functions instead of
second-order distributions. Let U(X, p) denote an uncertainty
measure for a second-order probability distribution p with
support on X .

(i) Conicides with entropy C1 in [16], (1) in [21].
Uncertainty coincides with entropy if all second-order
probability is put on a single vector. That is, If p(x) = 1
for some x ∈ X , then U(X, p) = H(x).

(ii) Continuous C2 in [16]. U is continuous in p.
(iii) Symmetric C3 in [16]. U is symmetric, i.e. invariant

under permutations in the vectors x, i.e.. if Y =
{(xπ(1), xπ(2), . . . xπ(n))|x ∈ X} where π is a
permutation of {1, 2, . . . , n}, U(X, p) = U(Y, p).

(iv) Hartley (2) in [21]. For a uniform second-order
distribution, i.e. p s.t. p(x) = 1/|X| for x ∈ X ,
uncertainty equals U(X, p) = log2 |X|, the Hartley
measure of X .

(v) Range (3) in [21]. The range of U is the interval
[0, log2 |Ω|] = [0, log2 n].
(v′) With an alternative interpretation, (v)’ requires the

range to be [0, log2 |X|].

(vi) Additive C4 in [16], (5) in [21]. Additivity, i.e. if X is the
cartesian product A × B and A and B are independent
so that p((x,y)) = p(x)p(y), then U(X, p) = U(A, p)+
U(B, p).

(vii) Subadditive C5 in [16], (4) in [21]. Subadditivity, i.e. if
X is the cartesian product A×B, then

(viii) Bounded by entropy NC1’ in [16]. The uncertainty of a
second-order distribution is at least as high as the entropy
of any of the first-order probability distributions in its
support. U(X, p) ≥ maxx∈X H(x).

(ix) Bounded by credal set NC3 in [16]. If Π is a partition
of X and Conv(X) is the convex hull of X , then
U ′(Π(Conv(X))) ≥ U(Π(X), p), where U ′ is the
corresponding uncertainty measure for a credal set.
(ix′) For some of the measures considered here

(WH , H,WDKL
, H(µ)) it is not possible to remove

the second-order distribution p. But we might
formulate a version of NC3 that retains some of
what we believe is intended by the requirement.
Short of removing p we replace p with the
maximum entropy second-order distribution. We
declare requirement (ix)’ to be that U(X, p) ≤
U(X, q), where q is the uniform second-order
distribution on X .

In Table III we summarize our findings of whether the
measures studied here fulfill the requirements. H(µ) in the
rightmost column refers to the sum of WH and WDKL

.

VII. SUMMARY AND CONCLUSIONS

In this paper, we have suggested a division of uncertainty
between two levels corresponding to first and second-order
probability. With such a division it becomes possible to
distinguish between on the one hand uninformativeness in the
guise of a uniform probability distribution over the possible
outcomes and on the other hand uninformativeness in the form
of a uniform second-order distribution. In the first case we are
sure of being uncertain but in the other we express uncertainty
on a higher level.

We studied the behavior of six different uncertainty
measures, two for each uncertainty level and two for

9 Polibits (48) 2013ISSN 1870-9044

Uncertainty Levels of Second-Order Probability

TABLE III
PROPERTIES OF THE UNCERTAINTY MEASURES. NOTES: 1 WH +WDKL

FULFILLS REQUIREMENT (IV) IF AND ONLY IF µi = 1/n FOR i = 1, . . . , n. 2

EXAMPLE A IN TABLE II SERVES AS COUNTER EXAMPLE IN THE NEGATIVE CASES. 3 PROVED IN [16]. 4 EXAMPLES F, G AND H IN TABLE II SERVE
TOGETHER AS COUNTER EXAMPLE SINCE THE UNCERTAINTIES OF ROW F AND G SHOULD ADD TO THE VALUE IN H. 5 WE HAVE NOT FOUND NEITHER

PROOF NOR COUNTEREXAMPLE. 6 EXAMPLES F, G AND I IN TABLE II SERVE TOGETHER AS COUNTER EXAMPLE SINCE THE SUM OF THE
UNCERTAINTIES OF ROW F AND G SHOULD NOT BE LESS THAN THE VALUE IN I. 7 NOT APPLICABLE SINCE WE HAVE FOUND NO WAY OF DEFINING A

CORRESPONDING MEASURE FOR A CREDAL SET, I.E. WITH OUT THE SECOND-ORDER PROBABILITY DISTRIBUTION. 8 SEE EXAMPLES J AND K.

First-order Second-order Aggregated
Requirement WH DI H WDKL

GSU H(µ)

(i) Coincides with entropy Yes No No No Yes Yes
(ii) Continuous Yes Yes Yes Yes Yes3 Yes
(iii) Symmetric Yes Yes Yes Yes Yes3 Yes
(iv) Hartley No No Yes No No No1

(v) Range Yes Yes No Yes No Yes
(v′) No2 No2 Yes No2 Yes No2

(vi) Additive Yes No4 Yes Yes Yes3 Yes
(vii) Subadditive ?5 ?5 No6 No6 ?5 No6

(viii) Bounded by entropy No No No No Yes3 No
(ix) Bounded by credal set N. a.7 Yes N. a.7 N. a.7 Yes3 N. a.7

(ix′) No8 Yes Yes ?5 No8 No

the aggregated uncertainty. We introduced a new measure
for aggregated uncertainty, the sum of weighted entropy
and Kullback-Leibler divergence, where the weights are
second-order probabilities.

Furthermore, we showed that such a measure is equivalent
to the entropy of the mean first-order probability distribution.
In the paradigm of two levels of uncertainty, the entropy
of the mean could be viewed as the amount of uncertainty
that can be distributed on the first and second-order levels.
From such a perspective it is impossible to unequivocally
express unqualified ignorance, i.e. one must declare how
the uncertainty is distributed. And unless some reasonable
principle of uninformative distribution of uncertainty is
formulated we cannot say that first-order uncertainty is more
or less uncertain than second-order uncertainty.

We compared the measures by a set of properties that has
previously been utilized by [16] and [21]. Our separation
of measures into first, second-order and aggregated is not
very well reflected in the properties that are held, there is
no apparent pattern distinguishing the groups of measures.
The relation of measures and properties could be seen as
a degree of quality for the measures, the more properties
held the better. On the other hand it could be discussed
how appropriate the properties are for first and second-order
measures of uncertainty.

For example property (viii) seems at odds with the idea
that a second-order probability distribution weighs first-order
distributions differently. From our perspective it is perfectly
reasonable that an uncertainty measure for a second-order
distribution is lower than the entropy of any first-order
distribution in its support, at least if this distribution has
low second-order probability. If a distributions’ second-order
probability is low then it and its properties have a
correspondingly low impact.

If we compare our aggregated measure with the
GSU-measure, several differences can be found. Perhaps the

first notably such is that GSU gives∞ as a result for examples
C - E in Table II while our measure are always finite. As
previously mentioned, the reason for such a result is due to
that a positive second-order probability was assigned to a zero
first-order probability. Beside the differences in properties,
found in Table III, the GSU-measure also seems to put more
emphasis on the first-order level, as is seen from examples A
and B.

In example A there is no uncertainty at the second level but
a maximum of uncertainty on the first level, while in example
B the second-order uncertainty is uniformly distributed around
this maximal first-level uncertainty. In this case DI and the
GSU-measure gives a aggregated uncertainty that is a bit
higher in example B whilst our measure gives the same amount
of uncertainty, however, distributed differently among the first
and second-order level. As for examples A and B, the pure
entropy measure H stands out since it measures the uncertainty
of Example A as zero but the uncertainty of B as the maximal
log2 3. This example shows that it could be problematic to
use a pure second-order probability entropy measure unless
you do believe that belief in three different but close points
should reflect much higher uncertainty than belief in a single
point. H is also unique among the measures studied here in
that it is bounded by the number of first-order distributions
in the support of the second-order distributions, giving much
higher uncertainty values for Examples C, D and E than the
others except GSU.

We have introduced a new dimension of uncertainty but
many questions remain. What should be required of measures
for first- and second-order uncertainty of second-order
distributions? Is it possible to express a larger amount
of uncertainty with higher-order distributions? And how is
uncertainty on higher levels to be measured?

The assumption of discrete distributions causes many
questions. See for instance the discussion above about the
measure H , does a finer granularity imply greater uncertainty?

10Polibits (48) 2013 ISSN 1870-9044

David Sundgren, Alexander Karlsson

The points in the real-valued probability simplex that have no
support in our discrete examples, should they be viewed as
non-existent or simply as (second-order) impossible? Under
what circumstances can discrete second-order distributions
be seen as corresponding to reality, or when can they be
justified as approximations or simplifications? And what
consequences do such considerations have on the properties
that are desired for uncertainty measures? And how could
uncertainty measures for continuous second-order distributions
be designed and interpreted? These and similar questions are
to be addressed in future research.

REFERENCES

[1] R. F. Nau, “Uncertainty aversion with second-order utilities and
probabilities,” Management Science, vol. 52, no. 1, pp. 136–145, 2006.

[2] L. V. Utkin and T. Augustin, “Decision making with imprecise
second-order probabilities,” in ISIPTA ’03 - Proceedings of the
Third International Symposium on Imprecise Probabilities and Their
Applications, 2003, pp. 547–561.

[3] L. Ekenberg and J. Thorbiörnson, “Second-order decision analysis,”
International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, vol. 9, No 1, vol. 9, no. 1, pp. 13–38, 2001.

[4] P. Gärdenfors and N.-E. Sahlin, “Decision, probability and utility:
Selected readings.” in Decision, Probability and Utility: Selected
Readings. Cambridge University Press, 1988, ch. 16, Unreliable
probabilities, risk taking, and decision making, pp. 313–334.

[5] G. D. Cooman and P. Walley, “A possibilistic hierarchical model for
behaviour under uncertainty,” Theory and Decision 52 (4), pp. 327–374,
2002.

[6] L. A. Zadeh, “Fuzzy probabilities,” Information Processing and
Management, 20, pp. 363–372, 1984.

[7] P. Smets, “Varieties of ignorance and the need for well-founded
theories,” Inf. Sci., pp. 135–144, 1991.

[8] E. T. Jaynes, “Monkeys, kangaroos, and n,” Maximum Entropy and
Bayesian methods in Applied Statistics: proceedings of the 4th Maximum
Entropy Workshop, pp. 26–58, 1984.

[9] G. Shafer, A Mathematical theory of evidence. Princeton University
Press, 1976.

[10] G. J. Klir, “A principle of uncertainty and information invariance,”
International Journal Of General System, vol. 17, no. 2-3, pp. 249–275,
1990.

[11] R. R. Yager, “Entropy and specificity in a mathematical theory of
evidence,” International Journal of General System, vol. 9, no. 4, pp.
249–260, 1983.

[12] G. J. Klir and R. M. Smith, “Recent developments in generalized
information theory,” International journal of fuzzy systems, vol. 1, no. 1,
pp. 1–13, 1999.

[13] A.-L. Jousselme, C. Liu, D. Grenier, and E. Bosse, “Measuring
ambiguity in the evidence theory,” Systems, Man and Cybernetics, Part
A: Systems and Humans, IEEE Transactions on, vol. 36, no. 5, pp.
890–903, 2006.

[14] M. Smithson, “Freedom: A measure of second-order uncertainty for
intervalic probability schemes,” in Proceedings of the Fifth Conference
Annual Conference on Uncertainty in Artificial Intelligence (UAI-89).
Corvallis, Oregon: AUAI Press, 1989, pp. 327–334.

[15] P. Gärdenfors and N.-E. Sahlin, “Unreliable probabilities, risk taking,
and decision making,” Synthese, vol. 53, no. 3, pp. 361–386, 1982.
[Online]. Available: http://dx.doi.org/10.1007/BF00486156

[16] J. C. Mork, “Uncertainty, credal sets and second order probability,”
Synthese, 2011, qP 20120202.

[17] A. Bronevich and A. Lepskiy, “Measuring uncertainty with imprecision
indices,” in ISIPTA ’07 - Proceedings of the Fifth International
Symposium on Imprecise Probabilities and Their Applications, 2007,
pp. 47–56.

[18] S. Kullback and R. Leibler, “On information and sufficiency,” Annals of
Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951.

[19] A. Karlsson, R. Johansson, and S. F. Andler, “Characterization and
empirical evaluation of bayesian and credal combination operators,”
Journal of Advances in Information Fusion, vol. 6, pp. 150–166, 2011.

[20] G. Pólya, “Sur quelques points de la théorie des probabilités,” Ann. Inst.
Poincaré, vol. 1, pp. 117–161, 1931.

[21] D. Harmanec and G. J. Klir, “Measuring total uncertainty in
dempster-shafer theory: A novel approach,” International Journal of
General Systems, vol. 22, no. 4, pp. 405–419, 1994.

11 Polibits (48) 2013ISSN 1870-9044

Uncertainty Levels of Second-Order Probability

Abstract—In CAD/CAM modeling, objects are represented

using the Boundary Representation (ANSI Brep) model. Detection

of possible intersection between objects can be based on the

objects’ boundaries (i.e., triangulated surfaces), and computed

using triangle-triangle intersection. Usually only a cross

intersection algorithm is needed; however, it is beneficial to have a

single robust and fast intersection detection algorithm for both

cross and coplanar intersections. For qualitative spatial reasoning,

a general-purpose algorithm is desirable for accurately

differentiating the relations in a region connection calculus, a task

that requires consideration of intersection between objects. Herein

we present a complete uniform integrated algorithm for both cross

and coplanar intersection. Additionally, we present parametric

methods for classifying and computing intersection points. This

work is applicable to most region connection calculi, particularly

VRCC-3D+, which detects intersections between 3D objects as well

as their projections in 2D that are essential for occlusion detection.

Index Terms—Intersection detection, classification predi-

cates, spatial reasoning, triangle-triangle intersection.

I. INTRODUCTION

HERE are relatively few software applications supporting

qualitative spatial reasoning. In part, this may be due to

the complexity in determining the intersection between 2D/3D

objects. Yet the ability to detect the existence of a possible

intersection between pairs of objects can be important in a

variety of problem domains such as geographic information

systems [1], CAD/CAM geometric modeling [2], real-time

rendering [3], geology [4], networking and wireless

computing.

In qualitative reasoning, it is not necessary to know the

precise intersection between pairs of objects; it is sufficient to

detect and classify the intersection between objects. Typically,

the boundary of each object is represented as a triangulated

surface and a triangle-triangle intersection is the

computational basis for determining intersection between

objects. Since an object boundary may contain thousands of

triangles, algorithms to speed up the intersection detection

process are still being explored for various applications,

sometimes with a focus on innovations in processor

architecture [5, 6, 7].

For pairs of triangles, there are three types of intersections:

zero dimensional (single point), one-dimensional (line

segment), and two dimensional (area) intersection. In the past,

almost all attention has been devoted to determining the cross

intersections, which resulted in an absence of analysis in two-

dimensional intersections. Coplanar triangle intersections are

unique because an intersection may be any of the

aforementioned three types. If the triangles cross-intersect,

only zero or one-dimensional intersection is possible. If the

planes are parallel and distinct, the triangles do not intersect.

If the triangles are coplanar, then there is a possibility of

intersection. Even when the cost of intersecting a triangle pair

is constant, the cost of intersecting a pair of objects A and B is

order O(TA × TB) where TA is the number of triangles in object

A, and TB is the number of triangles in object B.

In qualitative spatial reasoning, spatial relations between

regions are defined axiomatically using first order logic [8] or

the 9-Intersection model [9]. Using the latter model, the

spatial relations are defined using the intersections of the

interior, boundary, and exterior of one region with those of a

second region. It has been shown in [10] that it is sufficient to

define the spatial relations by computing 4-Intersection

predicates, (namely, Interior–Interior (IntInt), Boundary–

Boundary (BndBnd), Interior–Boundary (IntBnd), and

Boundary–Interior (BndInt)) instead of 9-Intersections.

Since IntBnd and BndInt are the converse of each other,

only three algorithms are necessary for these predicates. In

order to implement these algorithms, we must first solve the

triangle-triangle intersection determination, as it is a lower

level problem that must be solved in order to determine the 4-

Intersection predicates that, in turn, determine the qualitative

spatial relation between two objects.

This paper is organized as follows: Section II briefly

reviews the background and related cross intersection

framework. Section III discusses motivation and conceptual

classification of intersections, whereupon Section IV develops

the overall main algorithm for triangle-triangle intersection.

Section V describes the area intersection algorithm for general

Triangle-Triangle Intersection Determination

and Classification to Support Qualitative

Spatial Reasoning

Chaman L. Sabharwal, Jennifer L. Leopold, Douglas McGeehan

Manuscript received May 25, 2013. Manuscript accepted for publication

September 30, 2013.

The authors are with the Missouri University of Science and Technology,

Rolla, Missouri, 65409, USA (email: {chaman, leopoldj, djmvfb}@mst.edu).

T

13 Polibits (48) 2013ISSN 1870-9044; pp. 13–22

triangles, and predicates for classifying the intersection

between pairs of triangles, after which Section VI discusses

the applications to qualitative spatial reasoning.

II. BACKGROUND

A. The Traditional Algorithm

Many papers have been written on the intersection between

a pair of triangles [3, 11, 12, 13, 14, 15]. Interestingly, most of

them simply reinvent the algorithm and implement it slightly

differently and more efficiently, with no innovation. A recent

paper [7] surveyed various approaches for determining the

cross intersection detection, and developed a fast vector

version of the cross intersection detection, as well as

classification of the type of intersection. Our approach is

exhaustive, integrating both cross and coplanar intersection,

and analytically more rigorous than the previous approaches

[3, 11]. It is described in the next section where we follow the

approach similar to the techniques used in [7] for cross

intersection. The cross-intersection standalone algorithm is

described as follows:

boolean triTriCrossInt (tr1 = ABC, tr2 = PQR)

input: two triangles whose planes cross intersect

output: true if the triangles intersect, else false

The vector equations for two triangles ABC and PQR are

R1(u, v) = A + u U + v V, 0 ≤ u, v, u + v ≤ 1

R2(s, t) = P + s S + t T, 0 ≤ s, t, s + t ≤ 1,

where U = B – A, V = C – A, and S = Q – P, T = R – P.

 Let N1 = U×V, N2 = S×T be normals to the planes

supporting the triangles directed away from the objects.

The triangles intersect if there exist some barycentric

coordinates (u, v) and (s, t) satisfying the equation

A + u U + v V = P + s S + t T

Since N1xN2 ≠ 0 for cross intersecting triangles, and S

and T are orthogonal to N2, the dot product of this

equation with N2 eliminates S and T from the above

equation to yield

u U•N2 + v V•N2 = AP•N2

This is the familiar equation of a line in the uv-plane for

real variables u, v. The vector equation using real

parameter  becomes

),(
),(

),(
222

2

2

2

22

2
NUNV

NVNU

NVNU
NAPvu 




 

Then parameter values u, v are explicitly written as

)(
)(

222

2

2

2

22

2

22

2

2

2

2

2

22

2

2

2

2

2

NUNV

NVNU

NVNU
NAPvu

NU

NVNU

NV
NAPv

NV

NVNU

NU
NAPu




























If there is a  in these three equations such that 0 ≤ u, v, u

+ v ≤ 1, the triangles are ensured to intersect. The range

of values of  is bounded by m and M. This detects

whether the two triangles cross intersect only.

 In fact, for precise intersection, using m, M, as

parameter values, we compute (um, vm) and (uM, vM) for

the segment of intersection on ABC. Similarly the values

(sm, tm) and (sM, tM) represent the segment of intersection

on PQR. The precise intersection between the two

triangles is the common segment of these two segments.

If the segment degenerates into a single point, the

parameter values also can be used to classify the

intersection as a vertex, an edgeInterior point or

triangleInterior point in the triangle ABC.

III. CLASSIFICATION OF TRIANGLE INTERSECTIONS

For spatial reasoning, we detect intersection between pairs

of 2D/3D objects and classify pairwise intersection predicates

IntInt, IntBnd, BndInt, and BndBnd, without computing the

extent of intersections. The cross intersection can be

characterized into seven categories [7]. When cross

intersection is insufficient to determine tangential intersection,

some applications such as RCC8 and VRCC-3D+ [6] resort to

coplanar intersection to support relations such as externally

connected (EC) and tangentially connected (TPP, TPPc).

The precise intersection of coplanar triangles is a little more

complex because it can result in area intersection as well; the

coplanar triangles intersection can be classified as: Single

Point Intersection (vertex-vertex, vertex-edgeInterior), Line

Segment Intersection (edge-edgeCollinear), Area Intersection

bounded by 3, 4, 5, 6 edges, (Fig. 4, Fig. 5(a, b, c)). A triangle

may be entirely contained in the other triangle (Fig. 5(d)). In

this paper, we present a detailed analytical study of the

intersection of coplanar triangles, which has not been

previously presented.

The intersection between a pair of triangles can be

abstracted as Cross (C) intersection or Parallel (P) coplanar

triangles intersection. For taxonomy of cross and parallel

coplanar triangles, the conceptual intersections are supported

with figures presented here. The specific cases are as follows:

No intersection

disjoint (C, P) (see Fig. 1)

Single Point Intersection

vertex-vertex Intersection (C, P) (see Fig. 2(a))

vertex-edgeInterior Intersection (C, P) (see Fig. 2(b))

14Polibits (48) 2013 ISSN 1870-9044

Chaman L. Sabharwal, Jennifer L. Leopold, Douglas McGeehan

vertex-triangleInterior Intersection (C) (see Fig. 2(c))

edgeInterior-edgeInteriorCross Intersection (C) (Fig. 2(d))

Line intersection

edge-edgeCollinear Intersection (C, P) (see Fig. 3(a))

edge-triangleInterior Intersection (C) (see Fig. 3(b))

triangleInterior-triangleInterior Intersection (C) (Fig. 3(c))

Area Intersection

vertex-triangleInterior Intersection (P) (see Fig. 4, Fig. 5(a,

b, d))

edgeInterior-edgeInterorCross Intersection (P) (Fig. 4, Fig.

5(a, b, c))

edge-triangleInterior Intersection (P) (see Fig. 5(d))

triangleInterior-triangleInterior Intersection (P) (see Fig. 4,

Fig. 5(a, b, c, d))

It is possible that two triangles cross intersect in a line

segment even when a triangle is on one side of the other

triangle. In that case, it may be desirable to know which side

of the other triangle is occupied. In Fig. 3(b), the triangle PQR

(except QR which is in ABC) is on the positive side of

triangle ABC. So PQR does not intersect the interior of object

of triangle ABC. We will use this concept in Section VI.

Section VII concludes, followed by references in Section VIII.

It should be noted that the vertex-edge intersection

encompasses vertex-vertex, vertex-edgeInterior intersection,

whereas the vertex-triangle intersection encompasses vertex-

vertex, vertex-edgeInterior, and vertex-triangleInterior. Thus

1D JEPD cross intersection between ABC and PQR can be

one of the three possibilities: (1) collinear along edges, (2) an

edge of PQR lying in the plane of triangle ABC, or (3)

triangles “pierce” through each other yielding an intersection

segment.

IV. THE OVERALL ALGORITHM

(INTERSECTION BETWEEN TRIANGLES)

In this section, we describe the overall structure of the

triangle-triangle intersection. In Section IV.A, we develop

sub-algorithms that support the main algorithm at its

intermediate steps. In addition to existence or nonexistence of

an intersection, this algorithm also supports other auxiliary

computations, (e.g. classification of intersection and the

calculation of 3D intersection points, segment or area) which

are necessary for some applications.

A. Description of the Overall Algorithm

The general structure of the overall triangle-triangle

intersection algorithm is presented here. The description is in

Python style so that it can be easily transported to

programmable code. Here is the traditional approach to the

algorithm, whereas our approach is presented in Section V.

Fig. 1. Disjoint triangles: Planes supporting the triangles may be

crossing or coplanar. The triangles do not have anything in common.

Fig. 2. Triangles intersect at a single point. The intersections

between triangles ABC and PQR are JEPD (Jointly Exhaustive and

Pairwise Distinct) cases of Single Point intersection between

triangles. (a) vertex-vertex and (b) vertex-edgeInterior can occur in

both cross and coplanar intersections. However, (c) vertex-

triangleInterior and (d) edgeInterior-edgeInterior intersection point

can occur in cross intersection only.

Fig. 3. Triangles intersect in a line segment. (a) edge-edgeCollinear

intersection can occur in both cross and coplanar intersections.

However, (b) edge-triangleInterior and (c) triangleInterior-

triangleInterior intersection segment occur in cross intersection only.

15 Polibits (48) 2013ISSN 1870-9044

Triangle-Triangle Intersection Determination and Classification to Support Qualitative Spatial Reasoning

Fig. 4. Triangles intersect in an area. (a) One edge of triangle PQR

and two edges AB and AC of triangle ABC intersect, vertex A is in

the interior of PQR. (b) One edge of triangle PQR with three edges

of ABC, and vertex A in the interior of PQR. The common area is

bounded by three edges. The intersections vertex-triangleInterior,

edge_triangle, edgeInterior-triangleInterior hold.

Fig. 5. Triangles intersect in an area (continued). The coplanar

triangle intersections are bounded by four, five, and six edge

segments. (a) Two edges of triangle PQR and two edges AB and AC

of triangle ABC intersect, vertex A is in the interior of PQR, vertex

R is in the interior of triangle ABC. The intersection area is bounded

by four edges. (b) Two edges of triangle PQR and three edges of

triangle ABC intersect; vertex C is in the interior of PQR. The

intersection area is bounded by five edges. (c) Three edges of

triangle PQR and three edges of triangle ABC intersect; every vertex

of one triangle is outside the other triangle. The intersection area is

bounded by six edges. (d) No edge of triangle PQR intersects any

edge of triangle ABC; vertices P, Q, R are in the interior of triangle

ABC. The intersection area is the triangle PQR.

boolean triTriInt(tr1 = ABC, tr2 = PQR)

Input: two triangles ABC and PQR

Output: Boolean value whether the triangles intersect or

not.

Let ABC and PQR be two triangles. The triangles are

represented with parametric vector equations where u, v are

parameters for triangle ABC, and s, t are parameters for

triangle PQR.

R1(u, v) = A + u U + vV with 0 ≤ u, v, u + v ≤ 1

R2(s, t) = P + s S + tT with 0 ≤ s, t, s + t ≤ 1

where

U = B – A, V = C – A, are directions of the edges at A;

S = Q – P, T = R – P are the directions of edges at P.

Let N1 = UxV, N2 = SxT be the normals to planes supporting

the triangles ABC and PQR.

if N1xN2 ≠ 0 // planes supporting triangles are not parallel

 if triTriCrossInt (tr1, tr2) // cross intersect the triangles

 return true

 else

 return false

elseif N1xN2 = 0, // triangles planes are parallel

 if AP•N1 = 0, //the triangles are coplanar

 if triTriParInt (tr1, tr2)// implicit in Section V.

 return true

 else

 return false

 elseif AP•N1 ≠ 0, // the triangles are not coplanar,

 no Intersection

 return false

 endif

endif

/*end of algorithm*/

Here, we give all the supporting algorithms for

implementation and classification of all special case

intersections in the main algorithm. There are three broad

categories for intersections of triangles: zero dimensional

(single point), one-dimensional (line segment), and two

dimensional (area) intersection.

A.1 Single Point Intersection (0D).

We first analyze the vertices of the triangle PQR with

respect to triangle ABC to determine if a vertex P or Q or R is

common to the ABC triangle and conversely.

vertex-triangleTest (X, tri = ABC)

Input: X is a vertex of one triangle and tri another triangle.

Output: boolean value determining whether X is a vertex,

edgeInterior, triangleInterior point of the triangle.

To determine the relation of X {P, Q, R} to the triangle

ABC, we solve

A + u U + v V = X for 0 ≤ u, v, u + v ≤ 1,

Rearranging the equation, we get

u U + v V = AX .

16Polibits (48) 2013 ISSN 1870-9044

Chaman L. Sabharwal, Jennifer L. Leopold, Douglas McGeehan

To eliminate one of the parameters u, v to solve this, we dot

product the equation with vectors (UxV)xU and (UxV)xV.

Let

)()(

)(

VUVU

VUAX






then u = – •V and v = •U

if 0 ≤ u, v, u + v ≤ 1,

 return true // X of PQR, intersects the triangle ABC.

else

 return false

/*end of algorithm*/

The vector
)()(

)(

VUVU

VU



 is computed only once and used

repeatedly. As a result
)()(

)(

VUVU

VUAX




 is calculated

with one cross product, and u, v are calculated with one dot

product. The parameters u, v naturally lend themselves to

classification of intersections. Similarly,
)()(

)(

TSTS

TSPX




 .

A.2 Classification of Intersection.

In order to determine whether the vertex X of triangle PQR

is a vertex of ABC, or on the edge of ABC, or an interior

point of triangle ABC, no extra computational effort is

required now. Logical tests are sufficient to establish the

classification of this intersection. Since 0 ≤ u, v, u + v ≤ 1, we

can classify X relative to ABC in terms of the following

predicates:

vertex ((u, v)): If (u, v)  { (0, 0), (0, 1), (1, 0)}, then X is

one of the vertices of ABC.

edgeInterior ((u, v)): If (u = 0, 0 < v < 1) or (v = 0, 0 < u <

1) or (u + v = 1, 0 < u < 1)), then X is on an edge of ABC,

excluding vertices.

triangleInterior ((u, v)): If (0 < u < 1 and 0 < v < 1 and 0 <

u + v < 1), X is an interior point (excluding boundary) of the

triangle ABC.

Similarly, as above we can classify vertex X of triangle

ABC as vertex, edgeInterior, or triangleInterior point of

triangle PQR. Single point intersection may result from cross

intersection of edges as well. An edge point may be a vertex

or an interior point of the edge.

A.3 The Edge-edge Single Point Intersection.

If two triangles cross intersect across an edge, the edge-to-

edge intersection results in a single point. The edge-edge cross

intersection algorithm is presented below.

edge_edgeCrossIntersection (edge1, edge2)

Let the two edges be AB and PQ. Then the edges are

represented with equations

 X = A + u U with U = B – A, 0 ≤ u ≤ 1

 X = P + s S with S = Q – P, 0 ≤ s ≤ 1

if U×S•AP≠0, return false // non-coplanar lines

elseif U×S = 0, return false // lines are parallel

else U×S ≠0, // lines cross

/* solve for uP, sA values for the intersection point*/

 A + uP U = P + sA S

uP = S•PA×(U×S)/(U×S•U×S)

)()(

)(

SUSU

SUPAS
u
P






if (uP < 0) or (uP > 1), return false // no cross intersection,

)()(

)(

SUSU

SUAPU
s
A






if (sA < 0) or (sA > 1),

 return false //no cross intersection,

else

 return true //there is edge-edge cross intersection.

endif

/* end of algorithm*/

A.4 Composite Classification Of Single Point Intersection.

Let Am, Pm, be the pair of bilinear parametric coordinates of

the 3D intersection points R1(um,vm) and R2(sm,tm) with

respect to triangles ABC and PQR respectively. When there is

no confusion, we will refer to the points as Am and Pm instead

of 3D points R1(um,vm) and R2(sm,tm). From vertex-triangle

intersection (Section 3) we have

Pm is a vertex of PQR, and Am = (um, vm), where um and vm

are um = –•V, vm = •U or Am is a vertex of ABC, and Pm =

(sm, tm), where sm and tm) are sm = –'•T, tm = '•S.

From edge-edge intersection (Section B.3) we have

Am = (0, uP) or (uP, 0) or (uP, 1 – uP) or (1 – uP, uP)

Pm = (0, sA) or (sA, 0) or (sA, 1 – sA) or (1 – sA, sA)

If (uP = 0 or 1) and (sA = 0 or 1), it is vertex-vertex

intersection. If (uP = 0 or 1) and not (sA = 0 or 1), it is vertex-

edgeInterior intersection. If not (uP = 0 or 1) and (sA = 0 or 1),

it is edgeInterior-vertex intersection. If not (uP = 0 or 1) and

not (sA = 0 or 1), it is edgeInterior-edgeInterior intersection.

This completes the discussion of single point intersection

classification and parameters for the corresponding 3D points.

B. Line Intersection (1D)

Besides edge-edge cross intersection, the edge-edge

collinear intersection is a possibility, independent of crossing

17 Polibits (48) 2013ISSN 1870-9044

Triangle-Triangle Intersection Determination and Classification to Support Qualitative Spatial Reasoning

or coplanar triangles. In this section, we discuss algorithms

that result in a segment (1D) intersection; see Fig. 3.

B.1 Intersection Algorithm And Parametric Coordinates.

Here we derive an edge-edgeCollinear intersection

algorithm. This algorithm is seamlessly applicable to both

cross-intersecting and coplanar triangles. The following

algorithm implements intersection of edges of the triangles

ABC and PQR.

boolean edge-edgeCollinearTest (edge1, edge2)

input: two line segments

output: true if the segments have a common intersection,

else false. First we compute the linear parameter coordinates

uP, uQ, sA, sB for intersection of X = A + u (B – A), for X = P,

Q and X = P + s (Q – P), for X = A, B. Similarly, we can

compute the intersection of other edges of triangle ABC with

any edge of triangle PQR. Then we update the parameters for

the common segment. This algorithm is standard,

straightforward and is omitted for the sake of limited space.

B.2 Classification of Edge-edge Intersection

Now we have the linear coordinates for intersection points

uP, uQ and sA, sB. We map the linear parameters for

intersection points to bilinear parameter coordinates (u, v) and

(s, t). If uP, uQ are known along an edge and the edge is AB,

let um = uP, uM = uQ, vm = 0, vM = 0;

Similarly for AC, let vm = uP, vM = uQ, um = 0, uM = 0; and

for BC, let um = uP, uM = uQ, vm = 1 – uP, vM = 1 – uQ;

Thus ABC triangle bilinear coordinates for the intersection

points are:

Am=(um, vm), AM=(uM, vM)

where vm = vM = 0 or um=uM =0 or um+vm=uM + vM = 1.

Similarly for the triangle PQR, the linear coordinates sA, sB

of intersection translate into bilinear coordinates

Pm = (sm, tm), PM = (sM, tM)

where tm = tM = 0 or sm = sM = 0 or sm+tm = sM+tM = 1.

Now we have the bilinear parametric coordinates u, v, s, t

for the intersection segment. The common 3D segment is

denoted by [R1(Am), R1(AM)] which is [R2(Pm), R2(PM)] or

[R2(PM), R2(Pm)]. It is possible that the intersection segment is

equal to both edges, or it overlaps both edges, or it is entirely

contained in one edge. Since the intersection is a part of the

edges, it cannot properly contain any edge.

B.3. Composite Classification of Line Intersection.

For collinear edge intersection Am, AM are normally distinct

and similarly Pm, PM may be distinct. Though the intersection

segment is given by [R1(Am), R1(AM)] = [R2(Pm), R2(PM)) or

[R1(Am), R1(AM)] = [R2(Pm), R2(PM)], it is not necessary that

parameter coordinates [Am, AM] = [Pm, PM] or [Am, AM] = [PM,

Pm]. The predicate for edge-edge collinear intersection

segment becomes:

edge-edgeCollinear (edge1, edge2) = edge ([Am, AM]) and

edge ([Pm, PM]) and [R1(Am), R1(AM)] == [R2(Pm), R2(PM)] or

[R1(Am), R1(AM)] == [R2(PM), R2(Pm)]

Also it may be noted that for a cross intersection triangle, an

edge-triangleInterior intersection may result in a segment

intersection (Fig. 3(b)). For cross intersecting planes we have

(cf. 3.A for vertex to triangle intersection and [7]) .

edge-triangle (edge, triangle) = edge ([Am, AM]) and triangle

([Pm, PM]) and [R1(Am), R1(AM)] == [R2(Pm), R2(PM)] or

[R1(Am), R1(AM)] == [R2(PM), R2(Pm)]

This completes the discussion of segment intersection (1D),

classification, 3D points for both cross and coplanar triangle

intersections.

V. AREA INTERSECTION

For coplanar triangles, there may be no intersection (Fig. 1),

a single point (Fig. 2(a, b)), a segment (Fig. 3(a)) or an area

(Fig. 4, Fig. 5(a, b, c)), including one triangle contained in

another, (Fig. 5(d)). An area can result from two edges of one

triangle and one, two, or three edges of another triangle, or

three edges from both triangles creating a star shaped figure.

The resulting area is bounded by 3, 4, 5, or 6 edges. All other

configurations are homeomorphic to the figures presented in

this paper. For qualitative spatial reasoning, in some cases

(when the knowledge of cross intersection is insufficient), we

resort to coplanar intersection to distinguish the externally or

tangentially connected objects.

A. General Purpose Algorithm

If a vertex of PQR is in the interior of ABC (or the converse

is true), then an area intersection occurs, (Fig. 4(a, b), Fig. 5(a,

b, d)). If no two edges intersect and vertex_triangleInterior

(vertex, triangle = tr2) for every vertex of a triangle tr1, then

the triangle tr1 is contained in tr2 and conversely. If no edge-

edge intersection takes place and no vertex of one triangle is

inside the other triangle (or the converse is true), then they are

disjoint.

Although this algorithm may look simple, it is a new

approach compared to previous approaches cited in the

background section. The existing methods may use alternate

edge-oriented techniques to determine the area of intersection;

however, those will be limited [11]. Our algorithm is more

comprehensive and analytically rigorous; it is implicitly

capable of handling any specific type of intersection

simultaneously, which may be a single point, a segment or an

area.

18Polibits (48) 2013 ISSN 1870-9044

Chaman L. Sabharwal, Jennifer L. Leopold, Douglas McGeehan

THE ALGORITHM: A NOVEL APPROACH

boolean triTriIntersection (tr1 = ABC, tr2 = PQR)

The triangles ABC and PQR are

X = A + u U + v V with U = B – A, V = C – A, 0 ≤ u, v, u + v

≤ 1

X = P + s S + t T with S = Q – P, T = R – P, 0 ≤ s, t, s + t ≤ 1

The general set up for detecting intersections is to solve the

equation

A + u U + v V = P + s S + t T

for u, v, s, t. If a solution exists satisfying the constraints 0 ≤

u, v, u + v, s, t, s + t ≤ 1, then there is an intersection, else

there is no intersection.

Rearranging the equation, we have

 u U + v V = AP + s S + t T (1)

For simplicity in solving (1), we use the following notation.

Let , ,  be vectors and  be a positive real number. Then

for triangle ABC, let AP = P – A be a vector,  =

(U×V)•(U×V),










)(
,

)(
,

)(VUAPVUTVUS 










Similarly, let ', ', ' be vectors and d' be a positive real

number. Then for triangle PQR, let

 PA = A – P be a vector, ' = (S×T)•(S×T)










)(
,

)(
,

)(TSPATSVTSU 






 .

For intersection between triangles ABC and PQR, on

dotting equation (1) with (U×V)×U and (U×V)×V, we quickly

get

u = – (•V + s •V + t •V)

v = •U + s •U + t •U

Adding the two equations,

u + v = • (U – V) + s • (U – V) + t •(U – V)

In order that 0 ≤ u, v, u + v ≤ 1, we get the following

inequalities for possible range of values for s and t

 (a) – •U ≤ •U s + •U t ≤ 1 – •U

 (b) – 1 – •V ≤ •V s + •V t ≤ – •V

 (c) – • (U – V) ≤ •(U – V) s + •(U – V) t ≤ 1 – •(U – V)

These linear inequalities (a) – (c) are of the form

m ≤ ax + by ≤ n

The solution to this system of inequalities is derived at the

end of this section. We apply the results of the algorithms here

in solving (a) – (c).

If we solve_x (– •U, •U, •U, 1 – •U, – •V, •V, •V,

1 – •V, xm, xM)

 sm = max (0, xm), sM = min (1, xM)

If we solve_x (– •U, •U, •U, 1 – •U, – •(U – V), • (U

– V), •(U – V), 1 – •(U – V), xm, xM)

 sm = max (sm, xm), sM = min (xM, sM)

If we solve_x (– 1 – •V, •V, •V, – •V, – •(U – V),

•(U – V), •(U – V), 1 – •(U – V), xm, xM)

 sm = max (sm, xm), sM = min (xM, sM)

if sm > sM

 return false

else

 tM = 0; tm = 1

 for s[sm, sM] // we solve the inequalities for t

 if solve_y (– •U, •U, •U, 1 – •U, – •V, •V,

•V, 1 – •V, s, ym, yM)

 tm (s) = max (0, ym), tM (s) = min (1, yM),

 tm = min (tm (s), tm), tM = max (tM (s), tM) // extent of

overall t values

 if tm (s) > tM (s)

 Return false

 else

 tm (s) ≤ t ≤ tM (s)

 return true

/* end of algorithm */

We first solved the three inequalities pairwise for a range of

values for s, so that sm ≤ s ≤ sM holds good simultaneously

with three inequalities. Then from this range of s values, we

solved for t as a function of s such that tm (s) ≤ s ≤ tM (s), and

overall tm ≤ tM. If it succeeds, it ensures that there is a

solution. Similarly, we determine for u-parameter and v-

parameter values in terms of u to obtain the area enclosed by

the two triangles. This algorithm detects whether coplanar

triangles intersect, and we classify the intersection as in

Section V.B. Here we describe the two algorithms we applied

in the general-purpose algorithm. An auxiliary algorithm

solves inequalities of the form

 m ≤ ax + by ≤ n, and

 M ≤ Ax + By ≤ N

The brute force method for solving these inequalities may

lead to an erroneous solution as shown in the following

example. The general elimination of variables principle that

works well for equations does not directly translate into

solving inequalities. Such approach gives an inconsistent

solution to the two inequalities

19 Polibits (48) 2013ISSN 1870-9044

Triangle-Triangle Intersection Determination and Classification to Support Qualitative Spatial Reasoning

 (a) – 1 ≤ x + y ≤ 1 and

 (b) – 1 ≤ x – y ≤ 1

Since – 1 ≤ x – y ≤ 1 is equivalent to – 1 ≤ – x + y ≤ 1,

adding and subtracting the two inequalities (a) and (b), yields

an inaccurate answer –1 ≤ x ≤ 1, and – 1 ≤ y ≤ 1 which is the

area enclosed by dotted boundary in Fig. 6. But the accurate

solution is in the shaded area in Fig. 6, which is |x| ≤ 1, and |y|

≤ (1 – |x|).

Thus to accurately solve these two inequalities – 1 ≤ x + y ≤

1 and – 1 ≤ x – y ≤ 1, we first solve these for one variable x,

then use this variable value to solve for the other variable y as

– (1 – |x|) ≤ y ≤ (1 – |x|).

First, we solve two most general inequalities

 m ≤ ax + by ≤ n (1)

 M ≤ Ax + By ≤ N (2)

The following algorithm determines xm, xM such that for

each x in [xm, xM], the inequalities hold.

Fig. 6. Solution to a pair of inequalities: – 1 ≤ x + y ≤ 1 and – 1 ≤

x – y ≤ 1. Using brute force method of elimination of variables yields

the area enclosed by the dotted boundary, but the accurate solution is

enclosed by the shaded area.

boolean solve_x (m, a, b, n, M, A, B, N, xm, xM)

If a solution is found, it returns true, else it returns false.

First assume b and B are non-negative. If not, multiply them

by –1 to make them non-negative. Multiplying (1) by B and

(2) by b, subtraction leads to

(mB –Mb) ≤ (aB – Ab)x ≤ (nB – Nb),

which yields the range [xm, xM] for x values in addition to true

or false value for the algorithm.

Now once xm, xM have been determined, for each x in [xm,

xM] in the inequalities, we determine the range [ym(x), yM(x)]

for y. That is, after the range [xm, xM] is determined, only then

for each x in [xm, xM], the range for y is determined; in other

words, y is a function of x.

boolean solve_y (m, a, b, n, M, A, B, N, x, ym, yM)

Given that xm ≤ x ≤ xM are known, it solves the inequalities

for ym, yM . In the process, it may update the values of xm, xM

as needed.

If a solution is found, it returns true else it returns false.

Now for xm ≤ x ≤ xM, the inequalities become

 m –ax ≤ by ≤ n – ax and

 M – Ax ≤ By ≤ N – Ax.

These inequalities give the range [ym(x), yM(x)] of values

for y as function of x.

This completes the general-purpose algorithm discussion

for determining the triangle-triangle intersection algorithm

completely.

 B. Composite classification for area intersection

In this section, we summarize the algorithms in Section

V.A. The equations of the triangles ABC and PQR are

R1(u, v) = A + u U + v V,

 where U = B – A, V = C – A, 0 ≤ u, v, u + v ≤ 1

R2(s, t) = P + s S + t T,

 where S = Q – P, T = R – P, 0 ≤ s, t, s + t ≤ 1

These equations are independent of whether they are

supported by crossing planes or coplanar planes. The cross-

intersecting triangles discussion is well researched, see

Section II. Here we consider the general case, including

crossing or coplanar triangles. In this case, the intersection

may be an area in addition to a possible single point and a line

segment. We first determined [sm, sM] the range of s values,

then used the range on s to solve for [tm(s), tM(s)], the range of

t. If such a solution exists, it is ensured that the two triangles

intersect, which is sufficient for some qualitative spatial

reasoning applications. The uv values can be similarly derived

for the triangle ABC (e.g., first um, uM then vm(u), vM(u)). This

algorithm may be used with any application (e.g., qualitative

spatial reasoning, surface modeling, image processing etc.).

As described in Section III, an intersection can arise from

crossing or coplanar triangles. For example, vertex-vertex or

edge-edge intersection can occur regardless of triangles being

coplanar or crossing. The algorithm determines whether

intersection exists or not (i.e., it returns true or false). If true,

the parameter coordinates of intersection are readily available.

We can derive all the auxiliary information from the

parametric coordinates; only logical tests are sufficient for

classification of the intersections. It is not the intent of this

algorithm to determine whether the triangles are crossing or

coplanar.

This can be quickly determined as follows: if U×V•S×T ≠0,

then triangles cross, else triangle planes are parallel. If

AP•U×V = 0 or AP•S×T = 0, then the triangles are coplanar.

The bilinear parameter coordinates are denoted by Am = (um,

vm), AM = (uM, vM), Pm = (sm, tm), PM = (sM, tM). The

intersection points can be differentiated as follows.

20Polibits (48) 2013 ISSN 1870-9044

Chaman L. Sabharwal, Jennifer L. Leopold, Douglas McGeehan

If the algorithm returns false,

 No Intersection

Elseif (Am = AM) or (Pm = PM)

 Single Point Intersection

Elseif (sm = sM or tm = tM or um = uM or vm = vM)

 Line segment intersection common to two triangles

Else

 Area Intersection common to two triangles.

This will implicitly cover the case when a triangle is inside

the other triangle as well. If triangles do not intersect, then the

triangles are declared disjoint. This completes the discussion

of overall intersection between triangles.

VI. APPLICATION TO QUALITATIVE

SPATIAL REASONING

Qualitative Spatial Reasoning relies on intersections

between objects whose boundaries are triangulated. The

spatial relations are determined by the 9-Intersection/4-

Intersection model [9, 10]. That is, for any pair of objects A

and B, the interior-interior intersection predicate, IntInt(A, B),

has true or false value depending on whether the interior of A

and the interior of B intersect without regard to precise

intersection. Similarly IntBnd(A, B) represents the truth value

for the intersection of the interior of A and the boundary of B,

and BndBnd(A, B) represents the predicate for the

intersection of the boundaries of A and B. These four

qualitative spatial reasoning predicates are sufficient to define

the RCC8 spatial relations (see Table 1).

In the application VRCC-3D+, the boundary of an object is

already triangulated; that is, we will need to intersect pairs of

only triangles. To reduce the computational complexity, the

algorithm uses axis aligned bounding boxes (AABB) to

determine the closest triangles that may possibly intersect. For

example, for objects A and B, if bounding boxes for triangles

of A are disjoint from bounding boxes for triangles of B,

either A is contained in B (IntInt, BndInt is true) or B is

contained in A (IntInt, IntBnd is true) or A is disjoint from B.

The test for such containment of objects can be designed by

casting an infinite ray through the centroid of A. If the ray

intersects B an odd number of times, then B is contained in A.

Similarly, the test can be made if A is contained in B. If A is

not contained in B and B is not contained in A, then A and B

are disjoint (i.e., IntInt(A, B), IntBnd(A, B), BndInt(A, B),

and BndBnd(A, B) are all false).

If the triangles cross intersect (e.g., triangleInterior–

triangleInterior is true), then IntInt, IntBnd, BndInt, BndBnd

will be true. However if the triangles are coplanar and

intersect, only BndBnd(A, B) is true and IntInt(A, B),

IntBnd(A, B), BndInt(A, B) are false for the objects;

otherwise, BndBnd(A, B) is also false.

It is possible that two triangles cross intersect in a line

segment even when a triangle is on one side of the other

triangle, so edgeInterior–triangleInterior is true. In that case,

it may be desirable to know which side of the other triangle is

occupied. In Fig. 3(b), the triangle PQR is on the positive side

of triangle ABC. For example, if triangle1 of object A cross

intersects the negative side of triangle2 of object B, then

BndInt(A, B) is true.

Table 2 enumerates the outcome for triangle-triangle

intersection with respect to 3D objects. This is a

characterization of the intersection predicates, which

subsequently can be used to resolve the eight RCC8 relations.

Here we assume all normals are oriented towards the outside

of the object. Each characterization in Table 2 describes when

the associated predicate is true. If the truth test fails, then

other triangles need to be tested. If no pair of triangles results

in a true value, then the result is false.

TABLE I.

RCC8 RELATIONS AND INTERSECTION PREDICATES,

ONLY SHADED ENTRIES ARE NECESSARY.

TABLE II.

CHARACTERIZATION OF INTERSECTION PREDICATES

This characterizes the intersection predicates, which help in

resolving the RCC8 relations.

VII. CONCLUSION

For the 9-Intersection model used in qualitative spatial

reasoning, triangle-triangle intersection plays a prominent

role. Herein we presented a complete framework for

determining and characterizing the intersection of geometric

objects. In contrast to other algorithms, our approach is a

general technique to detect any type of intersection. It creates

classifications by applying logical tests rather than

computational arithmetic tests.

Thus, our algorithm not only detects whether or not an

intersection exists, but also classifies intersections as a single

21 Polibits (48) 2013ISSN 1870-9044

Triangle-Triangle Intersection Determination and Classification to Support Qualitative Spatial Reasoning

point, a line segment, or an area. The algorithm provides more

information than required by spatial reasoning systems.

Consequently, we hope the new ideas and additional

information including classification of 3D intersection

presented herein will be useful in other related applications.

REFERENCES

[1] M. J. Egenhofer, R.G. Golledge, Spatial and Temporal

Reasoning in Geographic Information Systems, Oxford

University Press, USA, 1998.

[2] E.G. Houghton, Emnett R.F., Factor J.D. and Sabharwal C.L.,

“Implementation of A Divide and Conquer Method for Surface

Intersections,” Computer Aided Geometric Design, Vol. 2,

pp. 173–183, 1985.

[3] Oren Tropp, Ayellet Tal, Ilan Shimshoni. “A fast triangle to

triangle intersection test for collision detection,” Computer

Animation and Virtual Worlds, Vol. 17 (50), pp. 527–535, 2006.

[4] G. Caumon, Collon-Drouaillet P, Le Carlier de Veslud C, Viseur

S, Sausse J. “Surface-based 3D modeling of geological

structures,” Math. Geosci. 41:927–945, 2009.

[5] A.H. Elsheikh, M. Elsheikh, “A reliable triangular mesh

intersection algorithm and its application in geological

modeling,” Engineering with Computers, pp. 1–15, 2012.

[6] N. Eloe, J. Leopold, C. Sabharwal, and Z. Yin, “Efficient

Computation of Boundary Intersection and Error Tolerance in

VRCC-3D+”, Proceedings of the 18h International Conference

on Distributed Multimedia Systems (DMS’12), Miami, FL, Aug.

9–11, 2012, pp. 67–70, 2012.

 [7] C.L. Sabharwal, J.L. Leopold, “A Fast Intersection Detection

Algorithm For Qualitative Spatial Reasoning”, Proceedings of

the 19h International Conference on Distributed Multimedia

Systems (DMS’13), Brighton, UK, Aug. 8–10, 2013.

[8] D. A. Randell, Z. Cui, and A.G. Cohn. “A Spatial Logic Based on

Regions and Connection,” KR, 92, pp. 165–176, 1992.

[9] M.J. Egenhofer, R. Franzosa. “Point-Set topological Relations,”

International Journal of Geographical Information Systems 5(2),

pp. 161–174, 1991.

[10] C.L. Sabharwal, J.L. Leopold. “Reducing 9-Intersection to 4-

Intersection for identifying relations in region connection

calculus,” 24th International Conference on Computer

Applications in Industry and Engineering, pp. 118–123, 2011.

[11] P. Guigue, O. Devillers. “Fast and robust triangle-triangle overlap

test using orientation predicates.” Journal of GraphicsTools;

8(1): pp. 25–42, 2003.

[12] M. Held. “ERIT, A collection of efficient and reliable

intersection tests,” Journal of Graphics Tools; 2(4): pp. 25–44,

1997.

[13] T. Möller “A fast triangle-triangle intersection test,” Journal of

Graphics Tools, 1997; 2(2): 25–30.

[14] B. Didier, “An Efficient Ray–Polygon Intersection,” Andrew S.

Glassner, ed. Graphics Gems, Academic Press, pp. 390–393,

1990.

[15] C.L. Sabharwal, “Survey of implementations of cross intersection

between triangular surfaces,” MDC Report Q0909 (Now Boeing

at St. Louis, MO, USA), 1987.

22Polibits (48) 2013 ISSN 1870-9044

Chaman L. Sabharwal, Jennifer L. Leopold, Douglas McGeehan



Abstract—The authors have previously described an approach

for medical diagnostic reasoning based on the ST (Select and

Test) model introduced by Ramoni and Stefanelli et al. This

paper extends the previous approach by introducing the required

algorithm for medical expert system development. The algorithm

involves a bottom-up and recursive process using logical

inferences, abduction, deduction, and induction. Pseudocode for

the algorithm, and the data structures involved, are described,

and the algorithm’s implementation using a small sample

knowledgebase and programmed in Java is included in

appendixes. Implementation of a successful expert system is a

challenging process; development of the necessary algorithm for

its inference engine, and definition of a knowledgebase structure

that models expert diagnostic reasoning and knowledge, only

fulfils the initial step. Challenges associated with the remaining

steps of the development process can be identified and dealt with

using the CLAP software process model.

Index Terms—Medical diagnostic reasoning, medical expert

systems, ST model.

I. INTRODUCTION

EALISATION of medical expert systems has been one of

the earliest goals of the AI community. Unfortunately,

attempts by major projects such as INTERNIST-I and

CADUCEUS have not been successful [1].

One of the reasons for this failure can be understood in

relation to the lack of models that capture the depth and

complexity of expert medical diagnostic reasoning. Models

previously proposed for medical diagnostic reasoning include:

scheme-inductive reasoning [2]; hypothetico-deductive

reasoning [3]; backward and forward reasoning [4]; pattern

recognition [5]; Parsimonious Covering Theory [6];

Information Processing Approach [7]; Process Model for

diagnostic reasoning [8]; Certainty Factor model [9]; models

based on Bayes Theorem [10-12]; and models based on Fuzzy

logic [13-15]. The authors have previously described the

limitations of some of these approaches, and proposed an

approximate reasoning model for medical diagnostic

reasoning [16]. This previously proposed model was based on

Manuscript received August 6, 2013; accepted for publication on

September 30, 2013.

D. A. I. P. Fernando is with the School of Electrical Engineering and

Computer Science, University of Newcastle, NSW 2308, Australia (phone:

+61 423 281 664; e-mail: irosh.fernando@uon.edu.au).

F. A. Henskens is with the School of Electrical Engineering and Computer

Science, University of Newcastle, NSW 2308, Australia (e-mail:

frans.henskens@newcastle.edu.au).

the epistemological framework (also known as Select and Test

(ST) model) for medical diagnostic reasoning proposed by

Ramoni and Stefanelli et al. [17].

This paper complements the authors’ previous approach by

introducing the required algorithm for diagnostic inference.

The previously proposed reasoning model requires of at least

three layers of knowledgebase entities, namely diagnoses,

symptoms and symptom attributes, together with mathematical

functions to quantify those entities. In order to improve

readability, the algorithm described in this paper has been

deliberately simplified by restricting its application to the first

two layers only. Extension of the algorithm to incorporate the

full model is explained in the Discussion section of this paper.

The remainder of the paper begins with an introduction to

the ST Model followed by formalisation of the knowledgebase

as a graph consisting of symptoms and diagnoses. Then, the

algorithm’s pseudocode and the data structures, and its

implementation, are described using a sample knowledgebase.

Before the paper is concluded, other challenges that are faced

in developing successful medical expert systems are briefly

outlined, and the CLAP software process model [18] is

described as a framework for addressing these challenges in a

systematic manner.

II. SELECT AND TEST (ST) MODEL

The ST Model describes a cyclical process (Fig. 1), which

uses the logical inferences, abduction, deduction, and

induction that were described by Charles Peirce [19]. Usually,

diagnostic reasoning in clinical contexts begins when a patient

reports a symptom or symptoms to their clinician. Whilst these

symptoms are well-defined entities in the clinician’s mind,

patients may use various descriptive terms to describe their

symptoms. For example, a patient may use the descriptive

term ‘a dark cloud over me’ to describe the symptom ‘low

mood’.

The process of mapping these descriptive terms understood

by patients onto well-defined symptom entities used in the

knowledgebase is known as abstraction. The next step, known

as abduction, involves determining all likely diagnoses related

to the reported symptoms. Then, for each likely diagnosis, it is

necessary to determine if the patient is experiencing other

expected symptoms. This is known as deduction. These three

steps repeat cyclically until all the required symptoms and

diagnoses have been explored. Once this cycle is ended, the

final step, induction, occurs.

ST Algorithm

for Medical Diagnostic Reasoning
Irosh Fernando and Frans A. Henskens

R

23 Polibits (48) 2013ISSN 1870-9044; pp. 23–29

Fig. 1. The ST Model.

Fig. 2. Simplified knowledgebase representing diagnoses and symptoms only.

Induction involves matching the elicited symptoms with the

expected symptoms for each likely diagnosis, thus determining

whether the patient is suffering from any of the likely

diagnoses. More details of the ST model can be found in the

paper published by Ramoni and Stefanelli et al [17].

III. FORMAL MODEL FOR KNOWLEDGEBASE

By way of formalising the process described above, let us

represent all the diagnoses and symptoms in our

knowledgebase as sets D = {d1,d2,…,dn} and S = {s1,s2,…sm}

respectively. The relationship representing ‘given a symptom

si how likely is diagnosis dj' is represented as a two-layer

graph (Fig. 2), in which each arc is associated with a value θij

representing the likelihood (L) that si implies dj; note

0 ≤ θij ≤1. This can also be represented using the notation L(dj

| si) = θij. By way of example, in Fig. 2 the arc connecting d1

and s3 would have associated likelihood θ31. The

knowledgebase consisting of the two layers, symptoms and

diagnoses, can be represented as a matrix [θij].

IV. SELECT AND TEST ALGORITHM

Medical diagnostic reasoning involves two main steps:

1. search for symptoms,

2. arrive at diagnoses based on the symptoms found in

the previous step.

Because of the vastness of the knowledgebase, one of the

most challenging aspects of diagnostic reasoning is the

symptom search process. It is therefore not uncommon that

even an experienced clinician can at times miss a diagnosis

because of failure to elicit a key symptom that would have

provided an important clue to a diagnosis. If all the symptoms

are known, arriving at a diagnosis is relatively easy

computationally, depending on the commonly agreed or

established diagnostic criteria used in different medical

specialities. For example, in psychiatry, if all the symptoms

are known, the second step involves matching the elicited

symptoms with the diagnostic criteria described in a standard

diagnostic manual such as DSM-V [20]. In the ST algorithm,

abstraction, abduction and deduction are involved in the first

step, and induction is involved in the second step.

The proposed algorithm uses five dynamic data structures,

namely symptomsFound, symptomsToBeElicited,

symptomsAlreadyElicited, diagnosesToBeElicited and

diagnosesAlreadyElicited, which are implemented as linked

lists. Also, in order to describe how the algorithm works, a

static data structure patientProfile, which an artificial entity

that encapsulates all the symptoms actually present in a

patient, is used. The nature of the real world diagnostic

problem is that the symptoms a patient actually has are

initially unknown to the clinician. Symptom searching (the

first step) in real world diagnostic reasoning can be

conceptualised as an endeavour to find all the content, or at

least all the clinically important symptoms, stored in

patientProfile. In real world situations patientProfile is a

virtual entity because it represents the patient’s actual

symptoms, which need to be discovered by the clinician when

the patient is interviewed.

Details of the abstraction step have also been simplified in

this paper. Whilst, in the real world setting, abstraction

involves mapping the patient’s symptom descriptions to

defined knowledgebase entities, this largely mechanical

matching process is omitted. Rather, it is assumed that the

symptom descriptions stored in patientProfile correspond to

the symptom descriptions used in the knowledgebase.

Implementation of abstraction in a real world application

would require, for example, the patient informing symptoms

by answering closed-ended questions using check boxes in a

very basic human computer interface, or via an actual dialog

between patient and expert system using natural language

capabilities.

The data structures used in a computer-based

implementation of the algorithm are described in Fig. 3, and

the algorithm itself is shown in Fig. 6.

The ST Algorithm starts when a patient reports a set of

initial symptoms that are stored in symptomsFound and

diagnosesAlreadyElicited.

Abduction then begins, returning all the diagnoses

connected to each symptom stored in symptomsFound. A

threshold value likelihoodThreshold in relation to the con-

nection strength between any symptom and related diagnosis

can be used to determine which diagnoses are to be retrieved.

24Polibits (48) 2013 ISSN 1870-9044

Irosh Fernando, Frans A. Henskens

Fig. 3. Data structures used in the ST algorithm.

Accordingly, for any given symptom si the system will

retrieve all the diagnoses dj for which the likelihood that the

symptom is caused by the diagnosis is in accordance with θij >

likelihoodThreshold.

These diagnoses are stored in the linked list

diagnosesToBeElicited; before storing each diagnosis the

system checks if it has already been stored in

diagnosesAlreadyElicited because of association with a

previous symptom, thus avoiding the possibility of duplicate

diagnoses.

Next, deduction begins by returning all the expected

symptoms connected with each diagnosis stored in

diagnosesToBeElicited, after which the diagnosis is

removed from diagnosesToBeElicited and transferred into

diagnosesAlreadyElicited. All the expected symptoms that

are returned for each diagnosis are transferred into

diagnosesToBeElicited unless they are already stored in

diagnosesAlreadyElicited.

Abstraction then commences, eliciting each symptom

stored in symptomsToBeElicited by searching

patientProfile. Then the elicited symptom is removed from

symptomsToBeElicited and transferred into

symptomsAlreadyElicited . If the elicited symptom is found

in patientProfile it is stored in symptomsFound.

Finally, induction involves matching diagnostic criteria

(i.e. symptoms expected for each diagnosis in

diagnosesAlreadyElicited) with the symptoms stored in

symptomsFound. If the diagnostic criteria are met,

depending on the expected symptoms and the symptoms in

symptomsFound then the respective diagnosis is accepted.

Otherwise the respective diagnosis is excluded.

V. AN EXAMPLE AND ITS IMPLEMENTATION

In order to elaborate the proposed algorithm, let us

consider a small knowledge base consisting of twelve

symptoms and six diagnoses as described in Fig. 4. The

relationships between these diagnoses and symptoms (i.e. θij

as described previously) are described in the matrix shown in

Fig. 5. Java implementations of this knowledgebase and the

algorithm are presented in Appendices 1 and 2, respectively.

Fig. 4. Symptoms and diagnoses to be included in sample knowledgebase.

Details of the induction step are omitted in the

implementation; the implementation of this step depends on

the diagnostic criteria that are used to match the elicited

symptoms with the expected symptoms of diagnoses. In its

simplest form, the induction step can be implemented by one

to one matching of the expected symptoms with the elicited

symptoms. Nonetheless, depending on the diagnosis, it may

not be necessary to have all the expected symptoms to make

that diagnosis. In such situations, logical expression

constructed using AND and OR operators can be used to

formulate diagnostic rules by connecting different

combination of symptoms. These diagnostic rules can be

enhanced by allowing quantification of the severity of the

symptoms elicited in the patient, as described elsewhere [16].

Fig. 5. Representation of the knowledgebase as a matrix, [θij].

25 Polibits (48) 2013ISSN 1870-9044

ST Algorithm for Medical Diagnostic Reasoning

Fig. 6. ST algorithm.

26Polibits (48) 2013 ISSN 1870-9044

Irosh Fernando, Frans A. Henskens

For example, consider the diagnosis d1 = Major

Depression, s1 = Depressed Mood, and the related

symptoms s1 = Depressed Mood, s2 = Loss of Motivation,

s3 = Weight Loss, and s7 = Low Self Esteem.

Suppose we have a patient who presents with the above

symptoms, each with a different level of severity. Let us

assume that the severity of these symptoms (i.e.

quantification) corresponds to q1, q2, q3 and q7 respectively.

Using threshold values t11, t12, t13 and t17 respectively for each

of these symptoms in relation to d1, an example of a

diagnostic rule is as follows:

IF(q1>t11 AND q2>t12 AND q3>t13 AND q7>t17) THEN
 accepted(d1) = TRUE

where accepted(d1) indicates whether the diagnostic criteria

for d1 is met, resulting in its acceptance (or rejection) as a

diagnosis. It may require several such diagnostic rules for each

diagnosis, and some of the rules may also require the logical

operator OR in addition to AND. Developers may have to

consult standard diagnostic manuals (for example, DSM V

[20] in psychiatry) when formulating the diagnostic rules.

VI. DISCUSSION

The knowledgebase model and algorithm presented above

represent a simplified version of what it is required for

effective diagnostic inference in real world settings.

Nonetheless, they encapsulate the essential basic

characteristics of the reasoning process. This basic structure

can be extended and customised according to the

characteristics of clinical knowledge in various medical

subspecialties (i.e. subdomains). For example, in psychiatry,

the knowledgebase may require addition of an extra layer

known as clinical phenomenon between the symptoms and

diagnoses layers [21]. Also, an extra layer of symptom

attributes can be added below the symptoms layer, and each

symptom can be quantified using the values associated with

the related symptom’s attributes using mathematical functions

that approximate their relationships, as described

elsewhere [16].

In addition to searching for diagnoses related to a given

symptom based on likelihood, as described in the algorithm,

diagnostic reasoning in the real world setting also involves

searching for more critical (i.e. associated with relatively

worse consequences if undetected) diagnoses even though

their likelihoods seem low based on the patient’s reported

symptoms. The ST algorithm does an exhaustive search, and

therefore can be useful in ruling out more critical diagnoses

that can present with rather atypical symptoms. It is possible

to enhance ST by introducing a critical value δj associated

with each diagnosis dj that determines the level of criticality

of the diagnosis. Similarly to the likelihoodThreshold

described previously, a threshold value criticalityThreshold

can be used to select diagnoses for which

δj>criticalityThreshold.

The next significant challenge to implementing the

algorithm in a practically useful expert system is developing

and maintaining a sufficiently large knowledgebase. Because

of the vastness of the knowledgebase and the amount of

manpower and commitment required to develop and maintain

it, a sufficient database has been very difficult to achieve using

traditional development methods [22]. For example, despite

expending nearly 25-30 person years of work, it has still not

been able to complete the knowledgebase of INTERNIST-I,

an expert diagnostic system in Internal Medicine [1].

Even if the required knowledgebase were implemented,

there are yet more challenges. An important challenge is

engaging clinicians, who may often feel threatened by medical

expert systems on the grounds they may be intended to

duplicate and replace some of their skills [23]. The authors

have previously discussed these challenges, and introduced a

software process model known as a Collaborative and Layered

Approach (CLAP) as a strategy to deal with these challenging

issues [18].

The main layers and the activities within each layer of

CLAP are shown in Fig. 7, and the reader is encouraged to

refer to the main paper on this model for more details [18].

The form of ST algorithm introduced in this paper can be

considered as the main product of the conceptual layer, which

primarily deals with conceptualising the expert medical

reasoning process and the knowledgebase, and then translating

into a formal model. The societal layer then deals with

engaging clinicians in a collaborative development process,

and defining the role of the under-development expert system

within the complex modern day organisational structure of

healthcare services in which it will be used. Finally, the

computational layer deals with software and hardware

implementation of the expert system. As an important strategy

to overcome the difficulty of developing and maintaining the

knowledgebase, the CLAP model suggests use of an online

collaborative approach [24], which can be realised due to

advancement of Internet-based social networking platforms.

VII. CONCLUSION

Whilst acknowledging the challenges in developing

successful medical expert systems, this paper introduced a

simplified version of the algorithm and data structures

required for implementing an inference engine and

knowledgebase, based on a previously introduced diagnostic

reasoning model [16]. Even though there are many diagnostic

reasoning models that have been previously introduced, the

authors claim that the reasoning model on which the algorithm

introduced in ST this paper is designed, is more

comprehensive in relation to the overall expert diagnostic

reasoning process.

Furthermore, the algorithm closely models the recursive

steps that are involved in real world diagnostic reasoning,

using logical inferences. Because of the complexity and the

space required to describe the full algorithm and its

implementation, it was necessary in this paper to simplify the

27 Polibits (48) 2013ISSN 1870-9044

ST Algorithm for Medical Diagnostic Reasoning

algorithm and knowledgebase described. However, the paper

still provides the core structure on which, the full model can

be built. As a means to identifying and resolving other

challenges associated with the development process, the

authors suggest use of the CLAP software process model for

developing medical expert systems [18].

APPENDICES

Appendix 1. Java representation of the knowledgebase

package diagnosticalgorithm;
import java.util.ArrayList;

/**
 * @author Irosh Fernando
 */
public class Knowledgebase {

 // Declare one-dimensional array of symptoms
 static String symptoms[]= {
 "Depressed mood", /* 1 */
 "Loss of motivation", /* 2 */
 "Weight loss", /* 3 */
 "Fatigue" , /* 4 */
 "Chest discomfort", /* 5 */
 "Worrying thoughts", /* 6 */
 "Low self-esteem", /* 7 */
 "Headache", /* 8 */
 "Loss of appetite", /* 9 */
 "Hand tremors", /* 10 */
 "Hypertension", /* 11 */
 "Dizzinesse" /* 12 */
 };

 // Declare one dimensional array of diagnoses
 static String diagnoses[]= {
 "Major Depression", /* 1 */
 "Generalised Anxiety Disorder", /* 2 */
 "Hyperthyroidism", /* 3 */
 "Paechromocytoma", /* 4 */
 "Anaemia", /* 5 */
 "Ischaemic Heart Disease", /* 6 */
 };

 // Declare the knowledgebase as a two dimensional array

 static double diag_symp[][]={
/* symptoms index: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 */
/* diagnosis index: 1 */ { 0.9, 0.9, 0.6, 0.6, 0.0, 0.0, 0.6, 0.0, 0.7, 0.0, 0.0, 0.0 },
/* diagnosis index: 2 */ { 0.0, 0.0, 0.0, 0.7, 0.6, 0.9, 0.4, 0.6, 0.0, 0.6, 0.0, 0.4 },
/* diagnosis index: 3 */ { 0.3, 0.0, 0.7, 0.6, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8, 0.0, 0.3 },
/* diagnosis index: 4 */ { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.9, 0.0 },
/* diagnosis index: 5 */ { 0.0, 0.3, 0.0, 0.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6 },
/* diagnosis index: 6 */ { 0.3, 0.0, 0.0, 0.3, 0.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4, 0.6 },
};

 // return the index of a given symptom
 static public int getSymptomIndex(String symptom){
 // return -1 if not found
 int index=-1;
 for(int i=0; i<symptoms.length; i++){
 if(symptoms[i].equalsIgnoreCase(symptom))
 index=i;
 }
 return index;

 }

 // return the index of a given diagnosis
 static public int getDiagnosisIndex(String diagnosis){
 // return -1 if not found
 int index=-1;
 for(int i=0; i<diagnoses.length; i++){
 if(diagnoses[i].equalsIgnoreCase(diagnosis))
 index=i;
 }
 return index;
 }

 // return all diagnoses related a given symptom above a given threshold
 static public ArrayList getDiagnoses(String symptom, double threshold){
 ArrayList<String> diagnosesList = new ArrayList<>();
 int index= getSymptomIndex(symptom);
 for(int i=0; i< diagnoses.length; i++){
 if(diag_symp[i][index]> threshold)
 diagnosesList.add(diagnoses[i]);
 }
 return diagnosesList;
 }

 // return all symptoms related a given diagnosis above a given threshold
 static public ArrayList getSymptoms(String diagnosis, double threshold){
 ArrayList<String> symptomList = new ArrayList<>();
 int index= getDiagnosisIndex(diagnosis);
 for(int i=0; i< symptoms.length; i++){
 if(diag_symp[index][i]> threshold)
 symptomList.add(symptoms[i]);
 }
 return symptomList;
 }
}

Appendix 2. Java representation of the algorithm

package diagnosticalgorithm;
import java.util.ArrayList;
import java.util.List;

/**
* @author Irosh Fernando
 * @Date 30th of June 2013
 */
public class STAlgorithm {
 static Knowledgebase KB;
 static PatientProfiles Patient;

 static List<String> symptomsFound = new ArrayList<>();
 static List<String> symptomsToBeElicited = new ArrayList<>();

 // To store both symptoms found and not found
 static List<String> symptomsAlreadyElicited = new ArrayList<>();

 // store diagnose of which symptoms are to be explored
 static List<String> diagnosesToBeElicited = new ArrayList<>();

 // Store diagnoses of which symptoms have already been explored
 static List<String> diagnosesAlreadyElicited = new ArrayList<>();

 // set the likelihood threshold
 static double likelihoodThreshold=0.5;

 // Initialise the symptoms reported by patient at the beginning
 static private void initialise(){
 symptomsFound.add("Depressed Mood");

28Polibits (48) 2013 ISSN 1870-9044

Irosh Fernando, Frans A. Henskens

 symptomsAlreadyElicited.add("Depressed Mood");
 //...add more symptoms as necessary
}

// Abduction
 static private void doAbduction(){
 for(int i=0; i<symptomsFound.size();i++){
 ArrayList<String> diagList;
 diagList = KB.getDiagnoses(symptomsFound.get(i),
 likelihoodThreshold);
 // insert each diagnosis into likelyDiagnoses if not already in
 for(int j=0; j< diagList.size();j++){
 if (!diagnosesAlreadyElicited.contains(diagList.get(j)))
 diagnosesToBeElicited.add(diagList.get(j));
 }
 doDeduction();
 doAbstraction();
 }
 }

 // Deduction
 static private void doDeduction(){
 for(int i=0; i<diagnosesToBeElicited.size();i++){
 ArrayList<String> sympList;
 sympList = KB.getSymptoms(diagnosesToBeElicited.get(i),
 likelihoodThreshold);
// insert each expected symptom into symptomsToBeElicited if not already in
 for(int j=0; j< sympList.size();j++){
 if (!symptomsAlreadyElicited.contains(sympList.get(j)))
 symptomsToBeElicited.add(sympList.get(j));
 }
 // store alrady found symptoms in symptomsAlreadyElicited
 diagnosesAlreadyElicited.add(diagnosesToBeElicited.get(i));
 }
 // Empty the diagnosesToBeElicited after eliciting all the diagnoses
 diagnosesToBeElicited.clear();
 }

 // Abstraction
 static private void doAbstraction(){
 for(int i=0; i<symptomsToBeElicited.size();i++){

 if(!symptomsAlreadyElicited.contains(symptomsToBeElicited.get(i))){
 if(Patient.symptomPresent(symptomsToBeElicited.get(i))){
 symptomsFound.add(symptomsToBeElicited.get(i));
 }
 symptomsAlreadyElicited.add(symptomsToBeElicited.get(i));
 }
 }
// Empty the symptomsToBeElicited after eliciting all the expected symptoms
 symptomsToBeElicited.clear();
}

REFERENCES

[1] D. A. Wolfram, "An appraisal of INTERNIST-I," Artificial Intelligence

in Medicine, vol. 7, pp. 93-116, 1995.

[2] H. Mandin, A. Jones, W. Woloschuk, and P. Harasym, "Helping

students learn to think like experts when solving clinical problems,"

Academic Medicine, vol. 72, pp. 173-179, 1997.

[3] A. S. Elstein, L. S. Shulman, and S. A. Sprafka, Medical Problem-

Solving: an Analysis of Clinical Reasoning: Cambridge, MA: Harvard

University Press 1978.

[4] E. Hunt, "Cognitive Science: Definition, Status, and Questions " Annual

Review of psychology, vol. 40, pp. 603-629 1989.

[5] G. R. Norman, C. L. Coblentz, L. R. Brooks, and C. J. Babcook,

"Expertise in visual diagnosis - a review of the literature.," Academic

Medicine, vol. 66(suppl), pp. s78-s83, 1992.

[6] J. A. Reggia and Y. Peng, "Modeling diagnostic reasoning: a summary

of parsimonious covering theory," Computer Methods and Programs in

Biomedicine, vol. 25, pp. 125-134, 1987.

[7] P. M. Wortman, "Medical Diagnosis: An Information-Processing

Approach," Computers and Biomedical Research, vol. 5, pp. 315-328,

1972.

[8] J. Stausberg and M. Person, "A process model of diagnostic reasoning

in medicine," International Journal of Medical Informatics, vol. 54, pp.

9-23, 1999.

[9] E. H. Shortliffe and B. G. Buchanan, "A model of inexact reasoning in

medicine," Mathematical Biosciences, vol. 23, pp. 351-379, 1975.

[10] S. Andreassen, F. V. Jensen, and K. G. Olesen, "Medical expert systems

based on causal probabilistic networks," International Journal of Bio-

Medical Computing, vol. 28, pp. 1-30, 1991.

[11] T. Chard and E. M. Rubenstein, "A model-based system to determine

the relative value of different variables in a diagnostic system using

Bayes theorem," International Journal of Bio-Medical Computing, vol.

24, pp. 133-142, 1989.

[12] B. S. Todd, R. Stamper, and P. Macpherson, "A probabilistic rule-based

expert system," International Journal of Bio-Medical Computing, vol.

33, pp. 129-148, 1993.

[13] K. Boegl, K. P. Adlassnig, Y. Hayashi, T. E. Rothenfluh, and H.

Leitich, "Knowledge acquisition in the fuzzy knowledge representation

framework of a medical consultation system," Artificial Intelligence in

Medicine, vol. 30, pp. 1-26, 2004.

[14] L. Godo, R. L. de Mántaras, J. Puyol-Gruart, and C. Sierra, "Renoir,

Pneumon-IA and Terap-IA: three medical applications based on fuzzy

logic," Artificial Intelligence in Medicine, vol. 21, pp. 153-162, 2001.

[15] T. Vetterlein and A. Ciabattoni, "On the (fuzzy) logical content of

CADIAG-2," Fuzzy Sets and Systems, vol. 161, pp. 1941-1958, 2010.

[16] I. Fernando, F. Henskens, and M. Cohen, "An Approximate Reasoning

Model for Medical Diagnosis," in Software Engineering, Artificial

Intelligence, Networking and Parallel/Distributed Computing. vol. 492,

R. Lee, Ed., ed: Springer International Publishing, 2013, pp. 11-24.

[17] M. Ramoni, M. Stefanelli, L. Magnani, and G. Barosi, "An

epistemological framework for medical knowledge-based systems "

IEEE Transactions on Systems, Man and Cybernetics, vol. 22, pp.

1361-1375, 1992.

[18] I. Fernando, F. Henskens, and M. Cohen, "A Collaborative and Layered

Approach (CLAP) for Medical Expert System Development: A Software

Process Model," in IEEE/ACIS 11th International Conference on

Computer and Information Science (ICIS12), 2012, pp. 497-502.

[19] C. S. Peirce, "Illustrations of the logic of science, sixth paper-deduction,

induction, hypothesis," The Popular Science Monthly, vol. 1, pp. 470-

482, 1878.

[20] American Psychiatric Association, Diagnostic and Statistical Manual

of Mental Disorders: DSM-5: American Psychiatric Publishing

Incorporated, 2013.

[21] I. Fernando, M. Cohen, and F. Henskens, "A systematic approach to

clinical reasoning in psychiatry," Australasian Psychiatry, vol. 21, pp.

224-230, 2013.

[22] E. L. Kinney, "Medical Expert Systems - Who needs them ?," CHEST,

vol. 91, pp. 3-4, 1987.

[23] A. K. Das, "Computers in Psychiatry: A Review of Past Programs and

an Analysis of Historical Trends," Psychiatric Quarterly, vol. 73, pp.

351-365, 2002.

[24] D. Richards, "Collaborative Knowledge Engineering: Socialising Expert

Systems," in 11th International Conference on Computer Supported

Cooperative Work in Design, 2007.

29 Polibits (48) 2013ISSN 1870-9044

ST Algorithm for Medical Diagnostic Reasoning

 

Abstract—The identification, classification and recording of

events that may lead to the deterioration of buildings are crucial

for the development of appropriate repair strategies. This work

presents an extension of the Eindhoven Classification Model to

sort adverse events root causes for Building Conservation. Logic

Programming was used for knowledge representation and

reasoning, letting the modelling of the universe of discourse in

terms of defective data, information and knowledge. Indeed, a

systematization of the evolution process of the body of knowledge

in terms of a new factor, the Quality of Information one, embedded

in the Root Cause Analysis was accomplished, i.e., the system

proposed led to a process of Quality of Information quantification

that permit the study of the event's root causes, on time.

Index Terms—Building conservation, Eindhoven classification

model, knowledge representation and reasoning, logic programming,

quality of information.

I. INTRODUCTION

HE use of information systems as a tool for acquisition,

storage and manipulation of data represents the minimum

level that may be required from the information technology. In

fact, presently more than the automation of processes and the

increase of the data repositories are required. The focus is

placed on the ability of the information systems to be an

autonomous process of evaluation, decision and learning. This

configures a transversal dimension that encompasses various

scientific areas.

The application of methodologies emanating from the

Scientific Area of Artificial Intelligence to solve problems in

the field of Civil Engineering is not new, dating from the early

90s of XX century. Since then several studies have been

published where techniques like Artificial Neural Networks

and Genetic Algorithms have been applied to solve some

specific problems within the Civil Engineering portfolio [1].

Recently Lu et al. [2] presented an overview of the application

Manuscript received on August 6, 2013; accepted for publication on September

30, 2013.

Guida Gomes is with the Department of Informatics, University of Minho,

Braga, Portugal (e-mail: mguida.mgomes@gmail.com).

Henrique Vicente is with the Department of Chemistry & Évora

Chemistry Centre, University of Évora, Évora, Portugal (e-mail:

hvicente@uevora.pt).

Joaquim Macedo, Victor Alves, and José Neves are with the Department

of Informatics, University of Minho, Braga, Portugal (e-mail: {macedo,

valves, jneves}@di.uminho.pt).

of new methodologies developed in the field of Artificial

Intelligence to Civil Engineering. Among them some should

be highlighted, like Evolutionary Computation, Swarm

Intelligence, Fuzzy Systems, Reasoning Based Systems and

Chaos Theory.

Dukić et al. [3] present a model to facilitate the planning of

maintenance activities, in order to rationalize costs through

preventive interventions. The system can store the information

obtained in the regular inspections and based on them, infer

about possible failures and/or loss of the buildings' functional

characteristics. Furthermore the database allows monitoring

the behavior of the various elements of construction. Motawa

and Almarshad [4] developed an integrated system for

archiving information and knowledge regarding the

maintenance of buildings. The proposed system aims at the

understanding of the causes of building deterioration, but also

acts as a decision support system regarding preventive or

corrective maintenance actions. This system comprises a registration

module, a database and a knowledge extraction module for the

construction of a knowledge base.

However, the machinery mentioned above does not work

with incomplete, unknown and/or forbidden information. In

fact, for many situations that occur daily in building

conservation complete information does not exist at all.

Instead, the information available is insufficient or incomplete.

Undeniably the building conservation area is complex and

multifaceted and various types of adverse events may occur.

An adverse event may be defined as the failure of a planned

action to be completed as intended or the use of a wrong plan

to achieve an aim, and includes problems in practice,

relationships, procedures and systems. The most effective way

to prevent adverse events is to attack directly their causes.

Preventing the adverse events’ root causes improves

significantly the conservation/maintenance of buildings. Thus,

the proposed model will focus primarily on preventing the

adverse events' root causes. The model planned serves as the

formal foundation to an adverse event reporting and learning

computational system.

II. THE COMPUTATIONAL MODEL

An extended version of the Eindhoven Classification Model

(ECM), with the extensions and adaptations for the area of

A Logic Programming Approach to the

Conservation of Buildings Based on an Extension

of the Eindhoven Classification Model
Guida Gomes, Henrique Vicente, Joaquim Macedo, Victor Alves, and José Neves

T

31 Polibits (48) 2013ISSN 1870-9044; pp. 31–38

conservation and maintenance of buildings and its causal tree,

used to classify the adverse events’ root causes in

conservation / maintenance of buildings, is presented. The

theoretical foundation is based on an extension to Logic

Programming, in terms of a revision of its knowledge

representation and reasoning mechanisms. The introduction of

explicit negation in this universe endorsed the development of a

process of quantification of the above mentioned Quality of

Information (QoI) factor, embedded in the predicates

extensions that make one´s system, making possible to study

the event's root causes and to generate alerts and

recommendations in order to improve the state of building

conservation and maintenance.

A. The Eindhoven Classification Model

The ECM was originally developed in order to manage

human error in the chemical industry [5], being then applied to

other industrial arenas, such as energy production, steel

industry and healthcare. The Eindhoven Classification Model –

Medical Version consists of 20 (twenty) codes, divided into

four categories frequently used in a medical environment to

classify the underlying causes of the adverse events [6], and

recently was extended and adapted for the specific area of

imaging [7]. This approach assumes that humans are fallible

and that errors are to be expected in every organization, so it

is necessary to concentrate efforts on the conditions under

which individuals work and try to build defenses to avert

errors or to mitigate their effects. Assigning codes to the

causes of each adverse event, it is a practice that is useful for

tracking and trending.

The first stage to use the ECM based classification system is

to identify the root causes that result in a specific adverse

event. These root causes are subsequently classified according

to the classification model. Indeed, a causal tree is built and

techniques of Root Cause Analysis (RCA) are applied. Once

the root causes are identified, they may be used to provide a

more realistic view of how the system really works, as well as

to contribute to the creation of effective and lasting solutions.

B. The Extended Eindhoven Classification Model

The Extended Eindhoven Classification Model (EECM)

was adapted from the ECM, presented in the previous section.

To apply this model to the area of conservation and building

maintenance, the authors developed extensions for each

category of the original model. These extensions allow fitting

each category into the area of conservation and maintenance

of buildings and provide a broader view of the events that may

occur and the degree of complexity of this field. Thus, the

classification process becomes easier and more efficient.

Table I shows the five categories that make up the model, a

brief description of each one of them and the respective codes,

while in Table II a subset of the EECM codes and some

examples of adverse events are present. Figure 1, in turn, depicts

the EECM flow chart.

For instance, in the original model, the adverse events

classified as “Human behaviour – Knowledge-based errors”

(HKK) occur due to “the inability of an individual to apply

existing knowledge to a new situation”. In the EECM, this

definition was extended by saying that the events classified

under this category are due to “difficulties in execution,

interpretation or reporting procedures”. Some of the adverse

events falling into this category are “poorly executed procedures,

incomplete procedures and procedures poorly validated”.

The causal trees taken on by the original ECM, set that the

recognition of the event’s root causes and its mental picture, is

done under a hierarchical structure. On the other hand, once

one has to deal with incomplete and even contradictory

information, an Extension of Logic Programming (ELP) was

used for knowledge representation and reasoning, in order to

get a truth value in the interval [0, 1] as a measure of confidence

in any qualification process susceptible to be handled by the

system. Since an event may only occur due to the combination

of more than one cause, and a different event may come about

due to two or more causes, taken separately, in the original

model AND-gates and OR-gates are used to embody these two

possibilities in the causal tree.

The usual situations may also include the case where only

one cause leads to the occurrence of a certain event. In any

case the adverse events’ origins are known, i.e., there is

certainty about the events’ grounds. Beyond these situations, it

may happen that the causes of an event, action or decision are

unknown; it may be known that certain views are the source of

a given event, but it may not be sure what are the event

grounds; or it is not allowed to know the origin of a given

event (e.g. due to internal policies of the organization in

charge of maintaining the building).

Therefore, it is proposed the use of “unknown” and

“forbidden” operators, to allow for a representation of

unknown values of an infinite set of values, unknown values

of a given set of values, and values not allowed or forbidden.

The information contained in each causal tree is then

represented in ELP by the extensions of a predicates set, being

also used as a formalism to quantify the causal tree´s QoI (see

Section 2.4). The QoI allows the identification of the causes

that should be taken into account, in first place, and how this

hampers all the classification process.

The information obtained in this way to the RCA enables

automatic report generation with improvements in the

recommendations. Figure 2 presents the application of the

EECM to the adverse event “study not available”. In the

source of this event there is a great diversity of reasons. It is

possible that only one situation might be enough for the event

to occur or, perhaps, it may be necessary a combination of

several factors. The causal trees should include all possible

causes and aim to be a generic representation of the problem.

For a particular occurrence of the event, its causes will fall on

a branch of the tree.

32Polibits (48) 2013 ISSN 1870-9044

Guida Gomes, Henrique Vicente, Joaquim Macedo, Victor Alves, José Neves

TABLE I.

CATEGORIES OF THE EXTENDED EINDHOVEN CLASSIFICATION MODEL FOR

CONSERVATION AND MAINTENANCE OF BUILDINGS AND RESPECTIVE CODES

Category Description Code

Technical

External Technical failures beyond the control and responsibility of the organization. TEX

Design Failures due to the poor design of the building project. TD

Construction Construction faults despite a well drawn up building project. TC

Materials Failures due to the materials used. TSR

Structural Response Failures due to the structural response of the buildings. TM

  

Environmental

Climate Faults relating with the climate factors that the buildings are subjected to. EC

Geotechnical Failures related to geotechnical aspects of the place where the buildings are implanted (soil mechanics). EG

  

Organizational

External Failures at an organizational level beyond the control of the organization, such as in another department or area. OEX

Transfer of Knowledge Failures resulting from inadequate options that do not ensure that the knowledge is transmitted to inexperienced staff. OK

Protocols Failures related to the quality/availability of the internal protocols (too complex/simple, unclear, or nonexistent). OP

Management Priorities Internal decisions in which safety is relegated to an inferior position reflecting a conflict between productivity and safety. OM

Culture Failures resulting from the collective approach and/or risk behaviors. OC

  

Human behaviour

External Human failures originating beyond the control of the organization, such as in another department or area. HEX

Knowledge-Based Behavior

Knowledge-Based Errors The inability of an individual to apply existing knowledge to a new situation. HKK

  

Rule-Based Behavior

Qualifications Incorrect fit between an individual’s qualifications, training, or education and a particular task. HRQ

Coordination Lack of task coordination within a team in an organization (e.g., an essential task not performed because everyone

thought that someone else had completed the task).

HRC

Verification Failures in the correct and complete assessment of a situation before starting the intervention. Includes the relevant

conditions of buildings and materials to be used.

HRV

Intervention Failures that result from faulty planning of task and/or poor execution. HRI

Monitoring Failures during monitoring of a activity/process during or after a rehabilitation intervention. HRM

  

Skill-Based Behavior

Slips Failures in the performance of a task due to the lack of fine motor skills of the technician. HSS

  

Other

Technicians Related Factor Failures related to physical and/or psychic conditions of the technician that influence the task performance and are

beyond the control of the organization.

TRF

  

Unclassifiable Failures that cannot be classified in any other category. X

TABLE II.

A SUBSET OF CODES OF THE EXTENDED EINDHOVEN CLASSIFICATION MODEL FOR

CONSERVATION AND MAINTENANCE OF BUILDINGS AND SOME EXAMPLES OF POSSIBLE ADVERSE EVENTS

Code Extension to the conservation and maintenance of buildings Examples

TD Difficulties in the elaboration of projects.

Failures sizing.

Lack of details.

Overloads not provided.

Specifications of recoating improper.

TC Difficulties in interpreting projects.

Lack of inspection.

Armature badly positioned.

Lack of cure or cure poorly executed.

Concrete with excess of water.

HKK Difficulties in execution, interpretation or reporting procedures. Poorly executed procedures.

Incomplete procedures.

Procedures poorly validated.

33 Polibits (48) 2013ISSN 1870-9044

A Logic Programming Approach to the Conservation of Buildings Based on an Extension of the Eindhoven Classification Model

 Start

Organizational

Factor?
External?

Knowledge

Transfer?

Yes No

Yes Yes

OEX OK

No

No

Protocols?
No

Yes

OP

Management

Priorities?
Yes

OM

No
Culture?

Yes

OC

No

Environmental

Factor?
Climate? Geotechnical?

Yes No

Yes Yes

EC EG

No

No

Human

Behaviour?
External? K-B?

Yes No

Yes No

HEX

Yes

No

Knowledge?

Yes

HKK

No

R-B? Qualifications?
Yes No

Yes

HRQ

No

Coordination?

Yes

HRC

No

Monitoring?
No

Yes

HRM

Intervention?

Yes

HRI

S-B? Slips?
Yes No

Yes

HSS

Verification?

Yes

HRV

No

No

Technical

Factor?
External? Design?

Yes No

Yes Yes

TEX TD

No

No

Construction?
No

Yes

TC

Materials?

Yes

TM

No Structural

Response?
Yes

TSR

Unclassifiable = X

Technicians

Related Factor?

Yes

No

TRF

Fig. 1. The Extended Eindhoven Classification Model for Conservation and Maintenance of Buildings flow chart

C. Knowledge Representation and Reasoning

A few decades ago non-classical techniques for modelling

the universe of discourse and the reasoning procedures of

intelligent systems have been proposed, in addition to the

classical ones [8]. Of particular interest to this work are the

techniques to deal with incomplete, inconsistent,

contradictory, default and forbidden information [9]. Intelligent

systems require the ability to reason with incomplete

information, since in the real world complete information is

hard to obtain, even in the most controlled situations. The idea

behind default information is the ability to make assumptions

or to jump to a plausible conclusion, derived from a

knowledge base in the absence of information to the contrary.

The derived information is defeasible, because in light of new

information the conclusion may need to be retracted, i.e., we

are in the presence of non-monotonic reasoning [9], [10]. A

suitable logic is needed, one that permits the representation of

incomplete, inconsistent and default information and supports

non-monotonic reasoning. In a classical logical theory or logic

program, the proof of a theorem (here understood as a question

submitted to the classification system) the outcome is a truth

value, namely false (0) or true (1), i.e., {0, 1}.

34Polibits (48) 2013 ISSN 1870-9044

Guida Gomes, Henrique Vicente, Joaquim Macedo, Victor Alves, José Neves

Study not

available

Technician took

the study for

reading at home
Report not ready

Incomplete

procedures
Study not printed

Study not ready
Unknown Forbidden Incomplete study

or

oror

ororand Unkn

own

Study in the

technician

possession

Technician

absent

Report not

written

Report not

reviewed

Report not

validated

Required

additional

procedures

Required to

complete

procedures

Lack of ink for

printing

Printer

failure

HRCOC OEX HRC HEXHEX OMTRF TEX

Ink stock

rupture

Fig. 2. Extended Causal Tree for the adverse event “Study Not Available”

ELP introduces another kind of negation, strong negation,

represented by the classical negation sign ¬. In most

situations, it is useful to represent ¬p as a literal, if it is possible

to prove ¬p. In ELP, the expressions p and not p, being p a

literal, are extended literals, while p or ¬p are simple literals.

Intuitively, not p is true whenever there is no reason to believe

p, whereas ¬p requires a proof of the negated literal [10].

Every program is associated with a set of abducibles, which

may be seen as hypotheses that provide possible solutions or

explanations of given queries, being given here in the form of

exceptions to the extensions of the predicates that make the

logical program or theory. The issue is providing expressive

power for representing explicitly negative information, as well

as to directly describe the closed world assumption for some

predicates, also known as predicate circumscription [11].

Three types of answers to a given question are then

possible, i.e., true, false and unknown. The representation of

null values will be scoped by the ELP. It is possible to

consider three types of null values: the former will allow for

the representation of unknown values, not necessarily taken

from a given set of values, the middle one will represent

unknown values taken from a given set of possible values, and

the latest will define values that are not allowed or forbidden.

Taking the example of the adverse event “study not available”

(Fig. 2) it might represent all the possible situations according

to the following setting:

 It is known that the study was not available because it was

in the technician’s possession – known value;

 The professional that recorded the adverse event only

informed that the study report was not ready. It is not

possible to be constructive, concerning the action or truth- -

value to consider. However, it is false that the action or

decision could be different. This situation suggests that the

lack of knowledge may be associated to a set of possible

known values – unknown value in a finite set of values (in

this case there are three possibilities, i.e., report not written,

report not reviewed or report not validated);

35 Polibits (48) 2013ISSN 1870-9044

A Logic Programming Approach to the Conservation of Buildings Based on an Extension of the Eindhoven Classification Model

 It is only known that the study was not available. In this

case who reported the adverse event did not know which

actions or decisions led to the event occurrence – unknown

value;

 And finally, namely due to internal policies of the

organization, it is not permitted to know the causes of a

given event – forbidden or not allowed values.

Considering the extensions of the predicates that represent

the information expressed in a generic causal tree when the

EECM is applied, where the first predicate denotes the adverse

event that was reported (adverse_event (study not available)),

the second represents an action or decision that led to the

adverse event occurrence and the third concerns the root cause

that was the primary factor that contribute to the actions and

decisions taken and, consequently, to the event occurrence:

 adverse_event: X

 action_or_decision: Y

 root_cause: Z

The knowledge representation in terms of the extension of

predicate action_or_decision, concerning possible action or

decision that leads to the adverse event in the situations

presented above, may be depicted by the following programs.

Program 1. Extension of predicate action_or_decision, concerning a

possible action or decision that leads to the adverse event “study not

available”, with a known value.

 action_or_decision(Y)

 not action_or_decision(Y),

 not exception(action_or_decision(Y)).

action_or_decision(“study in the technician possession”).

Program 2. Extension of predicate action_or_decision, concerning a possible

action or decision that leads to the adverse event “study not available”, with

an unknown value in a finite set of values.

 action_or_decision(Y)

 not action_or_decision(Y),

 not exception(action_or_decision(Y)).

exception(action_or_decision(“report not written”)).

exception(action_or_decision(“report not reviewed”)).

exception(action_or_decision(“report not validated”)).

Program 3. Extension of predicate action_or_decision, concerning a possible

action or decision that leads to the adverse event “study not available”, with

an unknown value, were  stand for a null value of an undefined type.

action_or_decision().

 action_or_decision(Y)

 not action_or_decision(Y),

 not exception(action_or_decision(Y)).

exception(action_or_decision(Y))

 action_or_decision().

Program 4. Extension of predicate action_or_decision, concerning a possible

action or decision that leads to the adverse event “study not available”, with

a value forbidden or not allowed.

action_or_decision(forbidden).

 action_or_decision(Y)

 not action_or_decision(Y),

 not exception(action_or_decision(Y)).

exception(action_or_decision(Y))

 action_or_decision(forbidden)

null(forbidden).

Using ELP, as the logic programming language, it is now

possible to set a procedure given in terms of the extension of a

predicate called demo: question, answer → [0, 1]. Given a

question (Q), it returns a solution based on a set of

assumptions, where question indicates a theorem to be proved

and answer denotes a truth value (see Program 5; True (1),

False (0), being Unknown (U) in the range of the truth values

in the interval]0, 1[).

Program 5. Extension of meta-predicate demo.

demo(Q,T)  Q

demo(Q,F)  ¬Q

demo(Q,U)  not Q ∧ not ¬Q

D. Quality of Information

The Quality of Information (QoI) factor with respect to the

extension of a generic predicate p may be analysed in different

contexts and measured in the interval [0, 1]. When the information

is known; when the information is unknown; when the information

is unknown but can be taken from a set of values. If the

information is known the QoIp for the extension of predicate p

is 1. For situations where the value is unknown the QoIp is

given by:

)0(0
1

lim 


N
N

QoI
Np

 (1)

Finally, if the information is unknown but can be derived

from a set of values, the QoIp is set in terms of 1/Card, where

Card denotes the cardinality of the abducibles set for p.

The next element of the model to be considered is the

relative importance that a predicate assigns to each of its

attributes under observation, i.e., wij stands for the relevance

of attribute j for predicate i. Assuming that the weights of all

predicates are normalized, it is now possible to define a

predicate’s scoring function (Vi(x)), i.e., for a value x = (x1, ...,

xn) in the multi-dimensional space defined by the attributes

domains, which is given in the form:

  


n

j jijiji
xVwxV

1
)()(

(2)

It is viable to measure the QoI that occurs as a result of

invoking a logic program to prove a theorem, by posting the

36Polibits (48) 2013 ISSN 1870-9044

Guida Gomes, Henrique Vicente, Joaquim Macedo, Victor Alves, José Neves

Vi(x) values into a multi-dimensional space and projecting it

onto a two dimensional one. Using this procedure, a circle with

dashed n-slices can be defined denoting the QoI that is

associated with each one of the predicate extensions that make

the logic program.

As an example the QoI associated with the information

about the RCA of the adverse event “study not available”, for

the first three cases present in the previous section, is given in

the form:

 Vaction_or_decision (former case) = 1

 Vaction_or_decision (middle term case) = 0.33

 Vaction_or_decision (latest case) = 0

Thereby it is possible to measure the QoI associated to the

question put in context, in terms of a logic program that

endorses procedures of action_or_decision, which may be

given in the form Which are the actions or decisions that led

to the adverse event occurrence?. The shaded n-slices (here n

is equal to 3 (three)) of the circle depicted in Figure 3 denote

the QoI.

Fig 3. The embedded QoI with respect to the question Which are the actions

or decisions that led to the adverse event occurrence?

III. DISCUSSION

Based on the formal approach referred to above, an adverse

event reporting and learning system was introduced. Indeed, to

the professionals of conservation and maintenance of

buildings and mostly to the organizations of the sector, this

approach may bring some advantages. After the adverse

events have been registered, similar to what happens in other

reporting systems, the analysis process becomes easier, more

expedite and reliable.

Undoubtedly, with the recourse to ELP, leading to an on the

fly measurement of the QoI of the logic terms used in the

process of judgement (in terms of a theorem to be proved), the

human intervention in the analyse process is only necessary to

approve the recommendations, causes and events that may

need attention. It also caters for the credibility and the

measurement of the efficacy of the implemented strategies and

actions.

Although the causal classification of events is sometimes

time-consuming and difficult, with the development of a

generic causal tree for each possible event, the increase in

time consuming is on the initial phase of the model enforce-

ment.

The QoI allows the ordering of causes, identifying the ones

that should be taken into account in the first place. In the

generic tree it is necessary to consider all possible causes,

rather than the most probable or usual ones. The information

obtained is useful in identifying possible trends and areas

requiring further investigation.

The conceptualized logic model offers the means for

knowledge extraction, providing the identification of the most

significant causes and suggestions of changes in the organization

policies and maintenance procedures, subject to formal proof.

Indeed, the creation of an inference system in support of the

logical model enables the generation of reports with strategies

for quality improvement on time, where a quality measure of

the system is on one´s confidence on the results, in terms of

the QoI.

IV. CONCLUSION

The main contribution of this work is to be understood in

terms of the evaluation of the QoI in the RCA and the

possibility to address the issue of incomplete information,

through the use of an Extension to Logic Programming (ELP)

in the construction of causal trees. ELP was used for

knowledge representation and reasoning with defective

information, catering for the modelling of the universe of

discourse in terms of incomplete, inconsistent, forbidden and

default data, information and knowledge.

A systematisation of the body of knowledge’s evolution

about QoI embedded in the RCA was accomplished. A way to

solve the representation problem of defective information was

presented, adequate for evaluating the QoI in such situations.

It was also presented a computationally feasible formal tool to

measure the value of QoI. With this approach to RCA and

classification it was possible to identify the causes, actions and

decisions that may lead to the adverse events and define the

strategies to prevent them.

V. FUTURE WORK

In the future an Adverse Event reporting and learning

System applied to the Conservation and maintenance of

Buildings (AESCB) will be developed. The AESCB will

comprise 3 (three) core modules, making it not only a system

for adverse event registration, but also a learning system. The

Adverse Event Reporting Forms in Conservation and

maintenance of Buildings (AERFCB) module will provide a

Web interface for adverse event registration.

The effort on this interface will be focused in its usability.

The event registration will be made by professionals of the

sector of conservation and maintenance of buildings and by

those who use the buildings, through predefined forms

adapted to each user profile.

37 Polibits (48) 2013ISSN 1870-9044

A Logic Programming Approach to the Conservation of Buildings Based on an Extension of the Eindhoven Classification Model

The Adverse Events Manager Reports in Conservation and

maintenance of Buildings (AEMRCB) module will be also

Web based and aims to enable the analysis of the adverse

events recorded by AERFCB, based on the Extension of the

Eindhoven Classification Model (EECM). The system will

provide an individual report for each adverse event recorded,

which will include all its details and the extended causal tree

obtained using the EECM.

The AEMRCB module will also provide charts with

statistical information about the impact, place of occurrence,

type of form and type of event recorded. Finally, the Adverse

Events Knowledge Manager in Conservation and

maintenance of Buildings (AEKMCB) module will use the

data from the system database to create a Knowledge Base

(KB), which although had been given in terms of ELP, will be

rewritten to productions in the logic programming language

PROLOG [12], based on the EECM.

From the KB other reports relevant to the improvement of

the repair strategies may be generated, always with the

assurance of data reliability and credibility, by taking into

account its QoI.

ACKNOWLEDGMENTS

This work is funded by ERDF—European Regional

Development Fund through the COMPETE Programme

(operational programme for competitiveness) and by National

Funds through the FCT—Fundação para a Ciência e a

Tecnologia (Portuguese Foundation for Science and

Technology) within project FCOMP-01-0124-FEDER-

028980.

REFERENCES

[1] H. Adeli, “Neural Networks in Civil Engineering: 1989–2000,” Computer-

-Aided Civil and Infrastructure Engineering, vol. 16, pp. 126-142, 2001.

[2] P. Lu, S. Chen and Y. Zheng “Artificial Intelligence in Civil Engineering,”

Mathematical Problems in Engineering, vol. 2012. [Online]. Available:

http://www.hindawi.com/journals/mpe/2012/145974/

[3] D. Dukić, M. Trivunić and A. Starčev-Ćurčin, “Computer-Aided

Building Maintenance with “BASE-FM” Program,” Automation in

Construction, vol. 30, 57-69, 2013.

[4] I. Motawa and A. Almarshad, “A Knowledge-Based BIM System for

Building Maintenance,” Automation in Construction, vol. 29, 173-182,

2013.

[5] T. W. van der Schaaf, “Near Miss Reporting in the Chemical Process

Industry: An Overview,” Microelectronics Reliability, vol. 35, 1233-1243,

1995.

[6] T. W.van der Schaaf and M. Habraken, “PRISMA-Medical: A Brief

Description,” Eindhoven University of Technology, Faculty of Technology

Management, Patient Safety Systems, 2005. [Online]. Available:

http://www.who.int/patientsafety/taxonomy/PRISMA_Medical.pdf

[7] S. Rodrigues, P. Brandão, L. Nelas, J. Neves, and V. Alves, “A Logic

Programming Approach to Medical Errors in Imaging,” International

Journal of Medical Informatics, vol. 80, 669-679, 2011.

[8] F. Sheridan, “A Survey of Techniques for Inference under Uncertainty,”

Artificial Intelligent Review, vol. 5, 89-119, 1991.

[9] M. L. Ginsberg, Readings in Nonmonotonic Reasoning. San Francisco:

Morgan Kauffman Publishers Inc, 1987.

[10] J. Neves, “A logic interpreter to handle time and negation in logic data

bases,” in Proceedings of the 1984 annual conference of the ACM on

the fifth generation challenge, R. L. Muller and J. J. Pottmyer, Eds.

New York: Association for Computing Machinery, 1984, pp. 50-54.

[11] U. Hustadt, “Do we need the Closed-World Assumption in Knowledge

Representation?,” in Working Notes of the KI'94 Workshop –

Reasoning about Structured Objects: Knowledge Representation meets

Databases (KRDB'94), F. Baader, M. Buchheit, M. A. Jeusfeld and W.

Nutt, Eds. Saarbrüken: German Research Center for Artificial

Intelligence, 1994, pp. 24-26.

[12] I. Bratko, PROLOG Programming for Artificial Intelligence. Toronto:

Pearson Education Canada, 2011.

38Polibits (48) 2013 ISSN 1870-9044

Guida Gomes, Henrique Vicente, Joaquim Macedo, Victor Alves, José Neves

Merging Deductive and Abductive Knowledge
Bases: An Argumentation Context Approach

Juan Carlos Nieves and Helena Lindgren

Abstract—The consideration of heterogenous knowledge
sources for supporting decision making is key to accomplish
informed decisions, e.g., about medical diagnosis. Consequently,
merging different data from different knowledge bases is
a key issue for providing support for decision-making. In
this paper, we explore an argumentation context approach,
which follows how medical professionals typically reason, in
order to merge two basic kinds of reasoning approaches
based on logic programs: deductive and abductive inferences.
In this setting, we introduce two kinds of argumentation
frameworks: deductive argumentation frameworks and abductive
argumentation frameworks. For merging these argumentation
frameworks, we follow an approach based on argumentation
context systems. We illustrate the approach by considering two
different declarative specifications of evidence-based medical
knowledge into logic programs in order to support informed
medical decisions.

Index Terms—Knowledge representation, deductive knowledge
bases, abductive knowledge bases.

I. INTRODUCTION

THE knowledge used when reasoning about a medical
diagnosis is ideally based on evidence-based medical

knowledge generalizable over a large population. However,
this knowledge is translated into diagnostic criteria based on
consensus among researchers in order to become applicable to
a single individual and of practical use in the encounter with
a patient. These different types of sources of knowledge make
use of different reasoning strategies, which are co-existing
and observable in medical professionals’ decision making
(e.g., causal and diagnostic reasoning) [1]. We acknowledge
this, and propose the notion of default argumentation context
system, meaning that there is at least two supporting
perspectives for each claim, where the supplementary part
of an argument may be considered being a meta-argument,
providing strength based on contextual information. An
illustrating example is the following: consider the situation
where there are diagnostic criteria for a disease, which a
patient partly fulfills considering the available observations.
However, since the available knowledge is incomplete, a
verification is made using an evidence-based medical study
where the diagnosis can be supported based on a population
study conducted in the area where the patient is living.

Manuscript received on August 1, 2013; accepted for publication on
September 30, 2013.

The authors are with the Department of Computing Science, Umeå Uni-
versity, SE-901 87, Umeå, Sweden (e-mail: {jcnieves,helena}@cs.umu.se).

Nowadays in distributed systems, the integration of multiple
knowledge bases has been taking relevance. Indeed, one can
find different approaches in the state of the art (e.g. the
context-based argumentation framework outlined in [2] and
the multi-context systems in [3]). Both approaches aim at
utilizing, and bridging different frameworks of interpretation
of available observations.

Against this background, we will explore the multi-context
systems approach further in this paper with the goal
to combine different kinds of argumentation frameworks
to generate informed medical decisions. To this end, we
define two kinds of argumentation frameworks: deductive
and abductive argumentation frameworks. The interaction
between deductive and abductive argumentation frameworks
is managed by the so called bridge rules. An illustration of
this interaction is depicted in Figure 1. Both the deductive
and abductive argumentation frameworks are based on logic
programs with negation as failure and the well-founded
semantics (WFS) [4]. In particular, we consider WFS for
building deductive and abductive arguments. We want to point
out that we chose WFS because this semantics is polynomial
time computable; moreover, there are logic programming
engines which compute WFS, e.g., DLV1, SMODELS2,XSB3.
In order to integrate the deductive and abductive argumentation
frameworks, we introduce the so called default argumentation
context systems. We show that by considering particular
argumentation semantics as the grounded semantics, one can
infer collective acceptable states from a default argumentation
context system in polynomial time (Proposition 3).

Fig. 1. Combining different knowledge bases by considering different kinds
of argumentation frameworks.

1http://www.dbai.tuwien.ac.at/proj/dlv/
2http://www.tcs.hut.fi/Software/smodels/
3http://xsb.sourceforge.net/

39 Polibits (48) 2013ISSN 1870-9044; pp. 39–46

As a running example, we will use an use-case when a
patient shows symptoms that can be evaluated using more than
one knowledge source and the diagnosis that is supported by
more knowledge sources is preferred. The example involves
two physicians, one is a novice and less experienced with
the type of disease in focus for diagnosis, and one is
an experienced physician. These two typically use different
reasoning strategies [1], and consequently, they need different
types of support.

The rest of the paper is divided as follows: In Section II, the
syntaxis of the logic programs which we consider is introduced
and the well-founded semantics is illustrated. In Section III,
our main contribution is presented. Basically, we introduce all
the components of the default argumentation context systems.
In the last section, we outline our conclusions and future work.

II. BACKGROUND

In this section, some basic concepts of logic programs are
presented. In particular, the syntaxis of extended normal logic
programs is presented. For capturing the semantics of these
programs, the well-founded semantics ([4]) is considered,
by lack of space we omit its formal definition. We assume
that the reader is familiar with basic background on Logic
Programming with negation as failure. A good introduction
to Logic Programming with negation as failure can be found
in [5]

A. Normal Logic Programs

The language of propositional logic has an alphabet
consisting of:

(i) propositional symbols: p0, p1, ...;
(ii) connectives : ∨,∧,←,¬, not,>;
(iii) auxiliary symbols : (,);

in which ∨,∧,← are 2-place connectives, ¬, not are 1-place
connectives and > is a 0-place connective. The propositional
symbols, >, and the propositional symbols of the form ¬pi
(i ≥ 0) stand for the indecomposable propositions, which we
call atoms, or atomic propositions. Atoms negated by ¬ will
be called extended atoms. We will use the concept of atom
without paying attention to whether it is an extended atom or
not. The negation sign ¬ is regarded as the so called strong
negation by the Answer Set Programming’s literature and the
negation not as the negation as failure. A literal is an atom,
a (called positive literal), or the negation of an atom not a
(called negative literal).

A (propositional) extended normal clause, C, is denoted:

a← b1 ∧ · · · ∧ bj ∧ not bj+1 ∧ · · · ∧ not bj+n (1)

where j+n ≥ 0, a is an atom and each bi (1 ≤ i ≤ j+n) is an
atom. When j+n = 0 the clause is an abbreviation of a← >
such that > is the propositional symbol that always evaluates
to true. In a slight abuse of notation, we sometimes write the
clause (1) as a ← B+ ∧ not B−, where B+ := {b1, . . . , bj}
and B− := {bj+1, . . . , bj+n}. An extended normal program

P is a finite set of extended normal clauses. When n = 0, the
clause is called extended definite clause. An extended definite
logic program is a finite set of extended definite clauses. By
LP , we denote the set of atoms in the signature of P . Let
ProgL be the set of all normal programs with atoms from L.

We will manage the strong negation (¬) in our logic
programs as it is done in Answer Set Programming (ASP) [5].
Basically, each atom of the form ¬a is replaced by a new
atom symbol a′ which does not appear in the language of the
program. In order not to allow inconsistent models from logic
programs, a normal clause of the form f ← a ∧ a′ ∧ not f
such that f /∈ LP is added.

Example 1: We illustrate a normal logic program with an
example from the dementia domain (simplified due to space
reasons). A summary of the clinical guidelines, which are used
in the dementia example given here can be found in [6]. We
use the following abbreviations:

AD = Alzheimer’s disease

DLB = Lewy body type of dementia

V aD = Vascular dementia

epiMem = Episodic memory dysfunction

fluctCog = Fluctuating cognition

fn = Focal neurological signs

prog = Progressive course

radV asc = Radiology exam shows vascular signs

slow = Slow, gradual onset

extraPyr = Extrapyramidal symptoms

visHall = Visual hallucinations

By considering the previous abbreviations as propositional
atoms, let P be a normal logic program formed by the
following set of normal clauses.

1) V aD ← fn ∧ not AD ∧ not DLB
2) V aD ← radV asc ∧ not AD ∧ not DLB
3) AD ← slow∧prog∧epiMem∧ not V aD∧ not DLB
4) DLB ← extraPyr ∧ visHall ∧ not fn
5) DLB ← fluctCog ∧ visHall ∧ not fn
6) DLB ← fluctCog ∧ extraPyr ∧ not fn
7) V aD ← fn ∧ radV asc

These normal clauses will be considered for building
arguments in the following sections.

B. Logic semantics

In this section, we present basic intuitions of 3-valued
logic programming semantics. To this end, we present a basic
definition of a 3-valued logic programming semantics.

Definition 1 (SEM [7]): For a normal logic program P , we
define HEAD(P) := {a| a ← B+ ∧ not B− ∈ P}
— the set of all head-atoms of P . We define SEM(P) =
〈P true, P false〉, where P true := {p| p ← > ∈ P} and
P false := {p| p ∈ LP \HEAD(P)}. SEM(P) is called a
model of P.

40Polibits (48) 2013 ISSN 1870-9044

Juan Carlos Nieves, Helena Lindgren

Basically, the 3-valued model SEM(P) of a given logic
program P identifies three different classes of atoms:

1) Atoms which are considered true w.r.t. SEM(P), i.e.
atoms from LP which belong to P true;

2) Atoms which are considered false w.r.t. SEM(P),
i.e. atoms from LP which belong to P false;

3) Atoms which are considered undefined w.r.t. SEM(P),
i.e. atoms from LP which do not belong to P true ∪
P false.

In the logic programming literature, there are different
3-valued logic programming semantics which have been
intensively studied [8], [9]. Among these logic programming
semantics, the Well-Founded Semantics (WFS) [4] satisfies
well-expected properties about non-monotonic reasoning [9].
Indeed, WFS is a well-behaved semantics [9] and is regarded
as an approximation of the Sable Model Semantics [10]
which is the core the Answer Set Programming paradigm.
An important computational property of WFS is that it is
polynomial time computable. Nowadays, there are several
solvers which can compute WFS in an efficient way: DLV4,
SMODELS5,XSB6. In this paper, we will use the inference of
WFS. By lack of space, we omit the formal definition of WFS;
however, the reader can find the WFS’s definition in [4] and
use one of the mentioned solvers for computing WFS. Given a
normal logic program, WPS(P) will denote the well-founded
model of P . Like SEM(P), WFS(P) is basically a 3-valued
model. In order to illustrate WFS(P), let us consider the
following example:

Example 2: Let P be the following normal logic program:
b← not a. c← not b. c← a.

By using a WFS solver, we can see that WFS(P) =
〈{b}, {a, c}〉. This means that the atom b is true according
with WFS(P); on the other hand, the atoms a and b are
false according with WFS(P).

In order to simplify to the presentation of some definitions
(in the next sections), we introduce some notation. Let P be
a normal logic program and WFS(P) = 〈T, F 〉 be the well-
founded model of P . Hence

– P |=WFST a if and only if a ∈ T ;
– P |=WFSF a if and only if a ∈ F

For instance, by considering the normal program P and
WFS(P) from Example 2, we can see that P |=WFST b,
P |=WFSF a and P |=WFSF c.

III. DEFAULT ARGUMENTATION CONTEXT SYSTEMS

In this section, the idea of Default Argumentation
Context Systems will be defined. To this end, two
kinds argumentation frameworks will be defined: deductive
argumentation frameworks and abductive argumentation
frameworks. The idea is that given a set of observations a
deductive argumentation framework, built from a deductive

4http://www.dbai.tuwien.ac.at/proj/dlv/
5http://www.tcs.hut.fi/Software/smodels/
6http://xsb.sourceforge.net/

knowledge base, will infer conclusions. On the other
hand, given the conclusions of the deductive argumentation
framework, an abductive argumentation framework, built from
an abductive knowledge base, will support the conclusions
of the given deductive argumentation framework. In order to
merge the two kinds of argumentation framework, we will
follow the ideal of Argumentation Context Systems which
were introduced in [11]. We will start defining deductive
argumentation frameworks.

A. Deductive Argumentation Frameworks

The structure of deductive argumentation frameworks
(DAFs) will follow the well-known structure of argumentation
frameworks which were introduced by Dung [12]. Hence, a
DAF basically is a set of deductive arguments and a set of
attacks between them. Therefore, let us start defining deductive
arguments.

Definition 2 (Deductive argument): Let P be an extended
normal logic program and O ⊆ LP such that O is called
observations. AD = 〈S,O′, c〉 is a deductive argument if the
following conditions holds:

1) S ∪O′ |=WFST c,
2) S ⊆ P such that S is a minimal set among the subsets

of P satisfying 1,
3) O′ ⊆ O such that O′ is a minimal set among the subsets

of O satisfying 1.
4) WFS(S ∪ O′) = 〈T, F 〉 such that @a ∈ LP and
{a,¬a} ⊆ T .

AD(P,O) denotes the set of deductive arguments built from
P and O.

As we can observe in Definition 2, a deductive argument
basically is a tuple of the form 〈S,O′, c〉. The first condition
of the definition suggests that S ∪ O′ is the support of the
argument and c is the claim of the argument. From conditions 2
and 3, we can guarantee that the support of the argument is the
minimum information which can infer c by considering WFS.
The last condition guarantees that this support is consistent.

Let us consider the following scenario in order to illustrate
the definition of deductive arguments: An older person comes
to the emergency room, after having fallen in her home.
This has happened several times lately, and she cannot
understand why and is getting very worried. In addition,
she has difficulties in performing activities in her daily
life, and it turns out that she has a state of dementia.
However, this does not explain why she is falling, so the
physician finds a reason to investigate further. The physical
and cognitive examinations result in finding extrapryamidal
symptoms (parkinsonism but without having a Parkinson’s
disease diagnosis), focal neurological symptoms, in addition
to that her cognitive functions tend to fluctuate during the day.
At this point the experienced physician is able to generate a set
of hypothetical diagnoses containing the correct one, based on
the information. The less experienced typically has difficulties
using this approach to generate hypotheses [1], but may utilize

41 Polibits (48) 2013ISSN 1870-9044

Merging Deductive and Abductive Knowledge Bases: An Argumentation Context Approach

a decision support application, which behaves in the following
way.

Example 3: Let P be the normal program introduced in
Example 1 and O = {fn, extraPyr, fluctCog}. Some
deductive arguments which one can build from P and O are:

Arg1D = 〈{}, {fn}, fn〉
Arg2D = 〈{DLB ← fluctCog ∧ extraPyr ∧ not fn},

{fluctCog, extraPyr}, DLB〉
Arg3D = 〈{V aD ← fn ∧ not AD ∧ not DLB},

{fn}, V aD〉
From these arguments, we can believe that the given patient
could be diagnosed with Lewy body type dementia (DLB)
or Vascular dementia (VaD). However, these arguments are
not final decisions. In order to have candidate decisions, we
require to consider their disagreements and to select potential
acceptable deductive arguments.

Once we have defined the structure of a deductive argument,
the attack relation between these arguments is defined as
follows:

Definition 3 (Attack relation between deductive arguments):
Let A = 〈SA, OA, cA〉, B = 〈SB , OB , cB〉 be two
deductive arguments, WFS(SA ∪ OA) = 〈TA, FA〉 and
WFS(SB ∪ OB) = 〈TB , FB〉. We say that A attacks B if
one of the following conditions holds:

– a ∈ TA and ¬a ∈ TB .
– a ∈ TA and a ∈ FB .

AtD(S) denotes the set of attack relations between the
deductive arguments which belong to a set of deductive
arguments S.

Observe that the first condition of the definition is capturing
the standard idea of rebut and the second condition is capturing
the standard idea of undercut. Rebut and undercut are two
well accepted ideas of disagreement between arguments in the
argumentation theory [13].

Example 4: Let us consider the three deductive arguments
which were introduced in Example 3. One can see the
following relations of attack:

Arg1D attacks Arg2D Arg2D attacks Arg3D
Now we are in position for introducing the definition of a

deductive argumentation framework.
Definition 4 (Deductive Argumentation Framework): Let

P be an extended normal logic program and O ⊆ LP . A
deductive argumentation framework is a tuple of the form
〈AD(P,O), AtD(AD(P,O))〉.

As we can see, a deductive argumentation framework
basically follows the structure of Dung’s argumentation
frameworks. The main difference is that a deductive argument
has a structure which is based on logic programs with negation
as failure and the inference of WFS. On the other hand, the
attacks relation between deductive arguments is based on the
inference of WFS.

It is quite easy to see that given the structure of
a deductive argumentation framework, one can use an
extension-based argumentation semantics [12] for selecting

sets of acceptable deductive arguments from a deductive
argumentation framework.

Example 5: Let ARD be the deductive arguments intro-
duced in Example 3. Hence DAF = 〈ARD, AtD(ARD)〉 is a
deductive argumentation framework. AtD(ARD) is composed
by the two attack relations identified in Example 4. By
considering the grounded semantics (introduced in [12]), we
can see that {Arg1D, Arg3D} is the grounded extension7 of
DAF . By observing Arg3D, a physician can believe that the
given patient could has Vascular dementia (VaD). The question
here is: how can a physician validate this diagnosis? We will
give an answer to this question in the next sections.

An interesting property of WFS is that this logic
programming semantics satisfies relevance [9]. This property
takes importance from the argumentation point of view in
order to show that the join of the pieces of knowledge
which support each argument which belongs to an extension
is consistent8. The only requirement of the given extension
is that has to be conflict-free, e.g., the extension does not
contain two arguments which attach each other. Hence, we
say that an extension-based argumentation semantics s satisfies
conflict-freeness if each extension which is inferred by s is
conflict-free.

Proposition 1: Let P be an extended normal logic program,
O ⊆ LP , DAF = 〈AD(P,O), AtD(AD(P,O))〉
be a deductive argumentation framework and s be an
extension-based argumentation semantics which satisfies
conflict-freeness. If E ∈ s(DAF), PE = {S ∪ O|〈S,O, c〉 ∈
E} and CE = {c|〈S,O, c〉 ∈ E} then the following conditions
hold:

1) PE |=WFST c such that c ∈ CE

2) There is not c ∈ LP such that PE |=WFST c and
PE |=WFST ¬c

B. Abductive Argumentation Frameworks
The other kind of argumentation frameworks that we

will consider are the so called abductive argumentation
frameworks. The novice physician in our example may
have had difficulties finding hypothetical diagnoses using
the deductive reasoning approach. Instead, he considers the
dementia diagnoses which he is familiar with, and identifies
their effects which match his observations.

Like deductive argumentation frameworks, abductive
argumentation frameworks are based on logic programs and
the inference of WFS. However, the logic programs which are
considered for building abductive argumentation frameworks
will be a particular class of logic programs which are called
Abductive Logic Programs.

Definition 5 (Abductive Program): Let P an extended logic
program. An abductive logic program is a pair 〈P,H〉 where
the following conditions hold:

7An extension is a set of arguments which is suggested by an extension-
based argumentation semantics.

8We say that a logic program P is consistent if there is not a model of P
which contains a and ¬a.

42Polibits (48) 2013 ISSN 1870-9044

Juan Carlos Nieves, Helena Lindgren

1) H ⊂ LP , H will be called hypothesis.
2) P is an extended normal logic program such

HEAD(P) ∩H = ∅.
This definition follows the ideas of abductive programs

introduced in [14]. Hence, by considering this definition an
abductive argument is defined as follows:

Definition 6 (Abductive Argument): Let PAb = 〈P,H〉 be
an abductive logic program and O a set of atoms. An abductive
argument with respect to an atom a ∈ O is AAb(a) = 〈S,E, a〉
such that the following conditions holds:

– S ∪ E |=WFST a
– S ⊆ P , E ⊆ H and both S,E are minimal amount the

subsets of P and E respectively.

AAb(PAb, A) denotes the set of abductive arguments built
from PAb and A.

As the deductive argument (see Definition 2), an abductive
argument basically is a tuple of the form 〈S,E, a〉 in which
we can find a support of the argument (S ∪E) and a claim a.
The definition of an abductive argument also requests that the
support of the argument has to be minimal. Unlike to deductive
arguments which take observations as part of their support,
abductive arguments take hypothesis as part of their support.
Indeed, we can onserve that an abductive argument explains
an observation a ∈ O.

In the following example, we are going to illustrate
abductive arguments.

Example 6: By considering the propositional atoms intro-
duced in Example 1, let PAb = 〈P ′, H〉 be an abductive
program such that H = {DLB, V aD,AD}, and P ′ the
following set of normal clauses:

extraPyr ← DLB.
fluctCog ← DLB.
visHall← DLB.
fn← V aD.
radV asc← V aD.
epiMem← AD.

These normal clauses were defined by re-interpreting the
clinical guidelines in order to explore what information they
give on causality, i.e., what can we expect to observe in an
individual with a certain disease.

Let us consider the findings obtained in Example 3 O =
{fn, extraPyr, fluctCog} such that we want to find an
explanation for each element of O by considering PAb. Hence,
some abductive arguments from PAb and O are:

ArgAb
1 = 〈{extraPyr ← DLB}, {DLB}, extraPyr〉

ArgAb
2 = 〈{fluctCog ← DLB}, {DLB}, f luctCog〉

ArgAb
3 = 〈{fn← V aD}, {V aD}, fn〉

The first argument argues (ArgAb
1) that extrapyramidal

symptoms (extraPyr) can be explained by Lewy body
dementia (DLB). The last two argument have easy readings.
Here the experienced physician is able to verify his hypotheses
obtained using the deductive approach. The less experienced
physician will limit his reasoning to the diagnoses he is
familiar with, thus may miss the less common alternative

DLB and jump to the conclusion that VaD is the cause of the
symptoms [1] which is an insufficiently informed decision.

Due to the aim of abductive arguments in our particular
application, which is to support the claims of deductive
arguments, we will not define a particular attack relation
(disagreements) between abductive arguments. In this setting,
abductive argumentation frameworks will be defined as
follows:

Definition 7 (Abductive Argumentation Frameworks): Let
PAb = 〈P,H〉 be an abductive logic program and O be a set of
atoms. An abductive argumentation framework w.r.t. PAb and
O is defined as follows: 〈AAb(PAb, O), At〉 such that At ⊆
AAb(PAb, O)×AAb(PAb, O).

Like deductive argumentation frameworks, abductive
argumentation frameworks follow the structure of Dung’s ar-
gumentation frameworks. Hence one can use extension-based
argumentation semantics for selecting acceptable abductive
arguments from an abductive argumentation framework.
Indeed, one can formulate a version of Proposition 1 for
abductive argumentation frameworks.

Proposition 2: Let PAb = 〈P,H〉 be an abductive logic
program, O be a set of atoms, AAF 〈AAb(PAb, O), At〉
be an abductive argumentation framework and s be an
extension-based argumentation semantics which satisfies
conflict-freeness. If E ∈ s(AAF), PE = {S ∪H|〈S,H, c〉 ∈
E} and CE = {c|〈S,H, c〉 ∈ E} then the following conditions
hold:

1) PE |=WFST c such that c ∈ CE

2) There is not c ∈ LP such that PE |=WFST c and
PE |=WFST ¬c

C. Argumentation Context Systems

So far we have instantiated a deductive knowledge based
into a deductive argumentation framework and an abductive
knowledge base into an abductive argumentation framework.
In order to support informed decision making (e.g., medical
diagnosis in our running example with the two differently
experienced physicians) these two argumentation frameworks
need to be combined, or merged.

To this end, we will follow the approach of Argumentation
Context Systems [11]; in particular, we will define the idea
of default argumentation context systems. For this purpose,
we introduce a definition of context expressions and contexts
which are key features of argumentation context systems.

From here whenever we use only the word argument, it
means that this argument can be either a deductive argument
or an abductive argument.

Definition 8 ([11]): A context expression for a set of
arguments AR and a set of values V has one of the following
forms (a, b ∈ AR; v, v′ ∈ V):

43 Polibits (48) 2013ISSN 1870-9044

Merging Deductive and Abductive Knowledge Bases: An Argumentation Context Approach

arg(a)/arg(a) a is a valid/invalid argument
att(a, b)/att(a, b) (a, b) is valid/invalid attack
a > b a is strictly preferred to b
val(a, v) the value of a is v
v > v′ value v is strictly better than v′

mode(r) the reasoning mode r ∈ {skep,
cred}

sem(s) s is a chosen argumentation
semantic [12]

A context C is a set of context expressions.
One can see that a context defines different aspects w.r.t. a

set of arguments. For instance:
a) preferences between arguments;
b) validity/invalidity of specific arguments (and at-

tacks);
c) a reasoning mode (either skeptical or credulous); and
d) an extension-based argumentation semantics (groun-

ded, stable, preferred, etc.) [12].
Hence, by considering a given context one can modify a
(deductive/abductive) argumentation framework as follows:

Definition 9: Let AF = 〈AR, att〉 be a (deduc-
tive/abductive) argumentation framework, V be a set of values
and C be a context for AR and V . The C>-modification
of AR is the (deductive/abductive) argumentation framework
AFC = 〈ARC , attC〉, where

– ARC = AR ∪ {〈{}, {},>〉}
– attC is the smallest relation satisfying the following

conditions:
1) if att(a, b) ∈ C, then (a, b) ∈ attC ,
2) if (a, b) ∈ att, att(a, b) /∈ C, and b ≯C a, then

(a, b) ∈ attC ,
3) if att(a, b) ∈ C or (arg(b) ∈ C ∧ (a, b)attC) then

(〈{}, {},>〉, a) ∈ attC .
Let observe that the new argument 〈{}, {},>〉, which is

non-attackable, basically is defeating invalid arguments as well
as attackers of valid arguments.

Following with argumentation context systems, we will
consider the C>-modification for defining the sets of
acceptable arguments.

Definition 10: Let AF = 〈AR, att〉 be a (deduc-
tive/abductive) argumentation framework, V be a set of values
and C be a context for AR and V such that sem(s) ∈ C,
mode(m) ∈ C. A set of arguments S ⊆ AR is an acceptable
C>-extension for AF , if either:

– m = cred and S∪{〈{}, {},>〉} is a s-extension of AFC ,
or

– m = skep and S ∪ {〈{}, {},>〉} is the intersection of
all s-extensions of AFC .

where s-extension is an extension (a set of arguments)
according to the extension-based argumentation semantics s.

In order to define default argumentation context systems,
let us introduce the so called bridge rules. To this end, let us
define the following notation: Let AR be a set of arguments
and Σ be a set of atomic symbols of the same cardinality

of AR. • is a bijective function from AR onto Σ. We shall
denote the image of a ∈ AR under • as a•. A straightforward
generalization of • over AR is: AR• = {a•|a ∈ AR}.

Given a set of argument AR, a bridge rule is a normal clause
of the form:

s← a•1 ∧ · · · ∧ a•n ∧ not a•n+1 ∧ · · · ∧ not a•m (2)

where s is a context expression and ai ∈ AR(1 ≤ i ≤ m).
By considering bridge rules, we define a mediator as

follows:
Definition 11: Let AF1 and AF2 be arbitrary (deduc-

tive/abductive) argumentation frameworks. A mediator for
AF1 based on AF2 is a tuple of the form: Med = 〈E,R1〉,
where E is a set of context expressions for AF1 and R1 is
a set of bridge rule of the form (2) such that s is a context
expression for AF1 and the arguments are from AF2.

Now that we have defined mediators between argumentation
frameworks, a module M is a tuple of the form 〈AF,M〉
such that AF is a deductive/abductive argumentation
framework and M is a mediator for AF based on a given
deductive/abductive argumentation framework.

A default argumentation context system is a pair of modules
which is defined as follows:

Definition 12: A default argumentation context system
(DACS) is a tuple of the form: DAF = 〈M1,M2〉, where
M1 = 〈AF1,Med1〉, M2 = 〈AF2,Med2〉, AF1 is a deductive
argumentation framework, AF2 is an abductive argumentation
framework, Med1 is based on AF2 and Med2 is based on
AF1.

Given the implicity dependency between M1 and M2, one
can see that given sets of acceptable arguments for M1, the
mediators define the consistent acceptable context for M2 and
viceversa.

In order to define the semantics of default argumentation
context systems, the acceptable states of a given default
argumentation context system will be defined as follows.

Definition 13: Let DACS = 〈M1,M2〉 be a default
argumentation context System.

– A state of DACS is a function S that assign each Mi =
〈AFi,Medi〉 a pair S(Mi) = 〈Acci, Ci〉 of a subset Acci
of arguments of AFi and a set Ci of context expressions
for AFi, i ∈ {1, 2}.

– A state S is stable if (i) each Acci is an acceptable C>-
extension of AFi and Ci is an acceptable context for Mi,
i ∈ {1, 2}.

In order to define a default argumentation context
framework for our running example, we are going to introduce
some notations: Let P be a normal logic program, PAb =
〈P ′, H〉 be an abductive program and O ⊆ LP . If ad ∈
AD(P,O), then:

h(ad) := aAb if aAb ∈ AAb(P ′, O),
aAb = 〈S,H, c′〉, c ∈ H and c′ ∈ O′

Example 7: Let DAF = 〈ARD, AtD(ARD)〉 be the
deductive argumentation framework introduced in Example 5
and ARAb be the set of abductive arguments introduced in

44Polibits (48) 2013 ISSN 1870-9044

Juan Carlos Nieves, Helena Lindgren

Example 6. One can see that AAF = 〈ARAb, {}〉 is an
abductive argumentation framework.

Let R be the set of bridge rules {arg(a)← b|a ∈ ARD, b ∈
ARAb and h(a) = b}. We can see that R = {arg(Arg2D) ←
ArgAb•

1 , arg(Arg2D) ← ArgAb•

2 , arg(Arg3D) ← ArgAb•

3 }.
An intuitive reading of the first bridge rule suggests that the
abductive argument ArgAb

1 supports the conclusion of the
deductive argument Arg2D. The same reading can be done with
the rest of bridge rules.

Let Med1 = 〈{sem(grounded),mode(skep)}, R〉 and
Med2 = 〈{sem(grounded),mode(skep)}, {}〉 be two
mediators. Hence, a default argumentation context sys-
tem DACSrunning of our running example can be:
DACSrunning = 〈〈DAF,Med1〉, 〈AAF,Med2〉〉. The
unique stable state of DACSrunning suggests that Acc1 =
{Arg3D} and Acc2 = ARAb. An interpretation of this stable
state suggests that according with the default argumentation
context system, the diagnosis of Vascular dementia (Vad)
is supported by the deductive argumentation framework and
the abductive argumentation framework. Let us remember
that V ad was the conclusion in Example 5. However, this
conclusion is now validated by ArgAb

3 from AAF .
It is known that the computational cost of extension-based

argumentation semantics is hight. Indeed the computational
complexity of the decision problems of the extension-
based argumentation semantics range from NP-complete to
Π

(p)
2 -complete [15]. One of the efficient extension-based

argumentation semantics which exists is the grounded
semantics. Hence, the use of the grounded semantics in each
module of a default argumentation context system (DACS)
implies to compute the stable state of DACS in a efficient
way.

Proposition 3: Let DACS = 〈M1,M2〉 be a default
argumentation context system. If M1 and M2 use the
grounded semantics, then the acceptable states of DACS are
computable in polynomial time.

IV. CONCLUSIONS AND FUTURE WORK

We have explored argumentation context systems in order
to support informed decision making with hematogenous
knowledge bases. To this end, we have introduced two
kinds of argumentation frameworks: deductive argumentation
frameworks and abductive argumentation frameworks. These
argumentation frameworks are based on logic programs with
negation as failure and WFS. For merging these argumentation
frameworks, Default Argumentation Context Systems have
been introduced and exemplified by a medical diagnostic
example.

An interesting property of WFS is that this logic
programming semantics satisfies relevance [9]. This property
takes importance from the argumentation point of view in
order to show that the join of the pieces of knowledge
which support each argument which belongs to an extension
is consistent. Hence, we showed that the knowledge which
belongs to a set of either deductive or abductive arguments is

consistent if this set of arguments belongs to an extension
of an argumentation semantics which satisfies conflict-free
(Proposition 1 and Proposition 2).

We also showed that by considering particular argumen-
tation semantics as the grounded semantics, one can infer
collective acceptable states from a default argumentation
context system in polynomial time (Proposition 3).

We are particularly interested in supporting medical
diagnosis in the demential domain. Hence, we argue that our
approach mimics the reasoning process of an expert physician.
In this context, we can say that the novice physician is able to
use only fragments of the abductive knowledge base, which
limits the quality of his assessments. By contrast, the expert
physician is able to use both the deductive and abductive
knowledge bases, which contributes to a holistic perspective
on a patient case. Since the Default Argumentation Context
Systems mimic the expert’s reasoning, they may guide the
novice physician into a reasoning process which generates
more informed decisions at the same time as the physician
develops his skills in diagnostic reasoning.

The quality of the informed decisions supported by the
Default Argumentation Context Systems could be improved
even further by integrating possibilistic values attached to
hypotheses and preferences among knowledge sources. This
will be our main focus for future work. Indeed, we have argued
that the declarative specifications of medical guidelines require
rich specification languages which could capture uncertain and
incomplete information [16], [17].

ACKNOWLEDGMENT

This research is partly funded by VINNOVA (Sweden’s
innovation agency) and the Swedish Brain Power.

REFERENCES

[1] V. L. Patel, D. R. Kaufman, and J. F. Arocha, “Emerging paradigms
of cognition in medical decision-making,” Journal of Biomedical
Informatics, vol. 35, no. 1, pp. 52–75, 2002.

[2] H. Lindgren and P. Eklund, “Differential diagnosis of dementia in an
argumentation framework,” Journal of Intelligent and Fuzzy Systems,
vol. 17, no. 4, pp. 387–394, 2006.

[3] G. Brewka, T. Eiter, and M. Fink, “Nonmonotonic multi-context
systems: A flexible approach for integrating heterogeneous knowledge
sources,” in Logic Programming, Knowledge Representation, and
Nonmonotonic Reasoning, ser. Lecture Notes in Computer Science, vol.
6565. Springer, 2011, pp. 233–258.

[4] A. V. Gelder, K. A. Ross, and J. S. Schlipf, “The well-founded semantics
for general logic programs,” Journal of the ACM, vol. 38, no. 3, pp.
620–650, 1991.

[5] C. Baral, Knowledge Representation, Reasoning and Declarative
Problem Solving. Cambridge: Cambridge University Press, 2003.

[6] J. O’Brien, D. Ames, and A. Burns, Eds., Dementia. Arnold, 2000.
[7] J. Dix, M. Osorio, and C. Zepeda, “A general theory of confluent

rewriting systems for logic programming and its applications,” Ann. Pure
Appl. Logic, vol. 108, no. 1-3, pp. 153–188, 2001.

[8] J. Dix, “A classification theory of semantics of normal logic programs: I.
strong properties,” Fundam. Inform., vol. 22, no. 3, pp. 227–255, 1995.

[9] ——, “A classification theory of semantics of normal logic programs: II.
weak properties.” Fundam. Inform., vol. 22, no. 3, pp. 257–288, 1995.

[10] M. Gelfond and V. Lifschitz, “The Stable Model Semantics for Logic
Programming,” in 5th Conference on Logic Programming, R. Kowalski
and K. Bowen, Eds. MIT Press, 1988, pp. 1070–1080.

45 Polibits (48) 2013ISSN 1870-9044

Merging Deductive and Abductive Knowledge Bases: An Argumentation Context Approach

[11] G. Brewka and T. Eiter, “Argumentation Context Systems: A Framework
for Abstract Group Argumentation,” in Logic Programming and
Nonmonotonic Reasoning (LPNMR 2009), ser. Lecture Notes in
Computer Science, vol. 5753. Springer, 2009, pp. 44–57.

[12] P. M. Dung, “On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games,”
Artificial Intelligence, vol. 77, no. 2, pp. 321–358, 1995.

[13] H. Prakken and G. A. W. Vreeswijk, “Logics for defeasible
argumentation,” in Handbook of Philosophical Logic, 2nd ed.,
D. Gabbay and F. Günthner, Eds. Dordrecht/Boston/London: Kluwer
Academic Publishers, 2002, vol. 4, pp. 219–318.

[14] C. Sakama and K. Inoue, “An abductive framework for computing
knowledge base updates,” TPLP, vol. 3, no. 6, pp. 671–713, 2003.

[15] P. E. Dunne, “Computational properties of argument systems satisfying
graph-theoretic constraints,” Artificial Intelligence, vol. 171, no. 10-15,

pp. 701–729, 2007.
[16] J. C. Nieves, M. Osorio, and U. Cortés, “Semantics for possibilistic

disjunctive programs,” Theory and Practice of Logic Programming,
vol. 13, pp. 33–70, 0 2013. [Online]. Available: http://journals.
cambridge.org/article S1471068411000408

[17] J. C. Nieves and H. Lindgren, “Possibilistic Nested Logic Programs,”
in Technical Communications of the 28th International Conference on
Logic Programming (ICLP’12), ser. Leibniz International Proceedings
in Informatics (LIPIcs), A. Dovier and V. S. Costa, Eds., vol. 17.
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2012, pp. 267–276. [Online]. Available: http://drops.dagstuhl.de/opus/
volltexte/2012/3628

46Polibits (48) 2013 ISSN 1870-9044

Juan Carlos Nieves, Helena Lindgren

Multiscale RBF Neural Network for Forecasting
of Monthly Hake Catches off Southern Chile

Nibaldo Rodriguez, Lida Barba and Jose Miguel Rubio L.

Abstract—We present a forecasting strategy based on
stationary wavelet transform combined with radial basis function
(RBF) neural network to improve the accuracy of 3-month-ahead
hake catches forecasting of the fisheries industry in the central
southern Chile. The general idea of the proposed forecasting
model is to decompose the raw data set into an annual
cycle component and an inter-annual component by using
3-levels stationary wavelet decomposition. The components are
independently predicted using an autoregressive RBF neural
network model. The RBF neural network model is composed
of linear and nonlinear weights, which are estimates using
the separable nonlinear least squares method. Consequently,
the proposed forecaster is the co-addition of two predicted
components. We demonstrate the utility of the proposed model
on hake catches data set for monthly periods from 1963 to
2008. Experimental results on hake catches data show that
the autoregressive RBF neural network model is effective for
3-month-ahead forecasting.

Index Terms—Neural network, forecasting, nonlinear least
squares.

I. INTRODUCTION

THE highly productive coastal upwelling zone off central
/ southern Chile (30–40oS) sustains a strong fishery

based on hake catches. The hake is highly important for
economic development in the southern zone of Chile. One of
the main goals of the fishery industry and the governments
is to develop sustainable exploitation policies. However,
fluctuations in the marine ecosystem complicate this task.
To the best of our knowledge, few publications exist on
multi-step-ahead forecasting models for fisheries resources. In
recent years, linear regression models [1], [2] and artificial
neuronal networks (ANN) [3]–[5] have been proposed for
fisheries forecasting models. The disadvantage of models
based on linear regressions is the supposition of stationarity
and linearity of the time series of pelagic species catches.
Although ANN allows modeling the non-linear behaviour
of a time series, they also have some disadvantages such
as the stagnancy of local minimum due to the steepest
descent learning method and over-fitting problem. A multilayer

Manuscript received on August 2, 2013; accepted for publication on
September 30, 2013.

Nibaldo Rodriguez is with the School of Computer Engineering at the
Pontificia Universidad Católica de Valparaı́so, Av. Brasil 2241, Chile (e-mail:
nibaldo.rodriguez@ucv.cl).

Lida Barba is with the School of Computer Engineering at the Universidad
Nacional de Chimborazo, Av. Antonio Jose de Sucre, Km 1.5, Ecuador.

Jose Miguel Rubio L. is with the School of Computer Engineering at the
Pontificia Universidad Católica de Valparaı́so, Av. Brasil 2241, Chile.

perceptron neural network to improve the convergence speed
and forecasting accuracy of anchovy and sardines catches off
northern Chile was proposed by [3]–[5], which reported a
coefficient of determination between 82% and 87%.

In this paper, the stationary wavelet transform (SWT)
combined with autoregressive RBF neural network models
are applied to improve accuracy forecasting of monthly hake
catches of the southern zone of Chile. The advantage of the
SWT in non-stationary time series analysis is their capacity
to separate low frequency (LF) from high frequency (HF)
components [6]–[12]. Whereas the LF component reveals
long-term trends, the HF component describes short-term
fluctuations in the time series. To separate these components
is a key advantage in the proposed forecasting strategies, since
the behaviour of each frequency component is more regular
than the raw time series.

On the other hand, neural network techniques based on
the nonlinear least square method have been accepted in
several domains as a flexible modeling technique, suited for
capturing nonlinear relationships between predictor variables
and a response variable. Therefore, the proposed forecaster
decomposes the raw data set into annual cycle component
and interannual component, which are predicted independently
using a RBF neural network model, whereas the final
forecasting results are the sum of results obtained from a single
model.

This paper is organized as follows. In the next section,
we briefly describe the stationary wavelet transform and the
forecasting model. The simulation results and performance
evaluation are presented in Section 3 followed by conclusions
in Section 4.

II. NEURAL FORECASTING MODEL BASED ON SWT

This section presents the proposed forecasting model for
monthly hake catches off southern Chile. The proposed
forecaster basically involves three stages. In the first stage, the
original data set is decomposed into 3-level stationary wavelet
decomposition to separate the annual cycle component and
the interannual component. In the second stage, the annual
cycle component and the interannual component are forecasted
independently using a RBF neural network model with the
separable nonlinear least squares (SNLS) algorithm. In the
third stage, the future values are predicted by the co-addition
of two predicted components.

47 Polibits (48) 2013ISSN 1870-9044; pp. 47–53

Fig. 1. Extraction process of components

A. Stationary wavelet decomposition

In time series analysis, discrete wavelet transform (DWT)
often suffers from a lack of translation invariance. This
problem can be tackled by means of the stationary wavelet
transform (SWT). The SWT is similar to the DWT in that the
high-pass and low-pass filters are applied to the input signal at
each level, but the output signal is never decimated. Instead,
the filters are up-sampled at each level.

A signal can be represented at multiple resolutions by
decomposing the signal on a family of wavelets and scaling
functions [8]–[12]. The approximation (scaled) signals are
computed by filtering the signal using a low pass filter of
length r, h = [h1, h2, ..., hr]. On the other hand, the detail
signals are computed by filtering the signal using a high pass
filter of length r, g = [g1, g2, ..., gr]. Finally, repeating the
decomposing process on any scale J , the original signal can
be represented as the sum of all detail coefficients and the last
approximation coefficient.

Consider the following discrete signal x(n) of length N
where N = 2J for some integer J . At the first level of SWT,
the input signal x(n) is convolved with the h1(n) filter to
obtain the approximation coefficients a1(n) and with the g1(n)
filter to obtain the detail coefficients d1(n), so that:

a1(n) =
∑
k

h1(n− k)x(k) (1a)

d1(n) =
∑
k

g1(n− k)x(k) (1b)

because no sub-sampling is performed, a1(n) and d1(n) are
of length N instead of N/2 as in the DWT case. At the next
level of the SWT, a1(n) is split into two parts by using the
same scheme, but with modified filters h2 and g2 obtained
by dyadically up-sampling h1 and g1. Here the up-sampling

operator inserts a zero between every adjacent pair of elements
of aj(n).

The general process of the SWT is continued recursively
for j = 1, ..., J and is given as:

aj+1(n) =
∑
k

hj+1(n− k)aj(k) (2a)

dj+1(n) =
∑
k

gj+1(n− k)aj(k) (2b)

Therefore, the output of the SWT is then the approximation
coefficients aJ and the detail coefficients d1, d2, . . . , dJ ,
whereas the original signal x(n) is represented as a
superposition of the form:

x(n) = aJ(n) +

J∑
j=1

dj(n) (3)

The wavelet decomposition method is fully defined by the
choice of a pair of low and high pass filters and the number
of decomposition steps J . Hence, in this study we choose a
pair of Haar wavelet filters given as:

h =
[1√

2

1√
2

]
(4a)

g =
[−1√

2

1√
2

]
(4b)

B. Proposed forecasting model

In order to predict the future signal x̂(n + h), our direct
forecasting model will be the co-addition of two predicted
values given as:

x̂(n+ h) = x̂a(n+ h) + x̂ia(n+ h) + e(n) (5)

where h = 3 represents the forecasting horizon, x̂a represents
the annual cycle component, x̂ia denotes the inter-annual

48Polibits (48) 2013 ISSN 1870-9044

Nibaldo Rodriguez, Lida Barba, Jose Miguel Rubio L.

20 40 60 80 100 120 140 160

−8000

−6000

−4000

−2000

0

2000

4000

(a)

Validation Samples (month)

M
on

th
ly

 A
nn

ua
l C

om
p.

(t
on

s)

Estimated Catches
Actual Catches

−5000 0 5000
−8000

−6000

−4000

−2000

0

2000

4000

(b)

Actual Value

E
st

im
at

ed
 V

al
ue

Data Points
Best Linear Fit
Ideal

50 100 150
−200

−100

0

100

200
(c)

Validation Samples (month)

R
el

at
iv

e
E

rr
or

 (
%

)

Fig. 2. Three-step-ahead forecasting for annual cycle component

component and e is an random process with distribution
ℵ(0, σ2

e).
The components extraction process is described as follows

and the flowchart is shows in Figure 1. The raw catches time
series is decomposed using 3-level wavelet decomposition.
The first detail component d1(n) of the direct output
of the decomposition represents a (2-4)-month variability,
the second detail component d2(n) of the direct output
denotes a (4-8)-month dynamic, whereas the third detail
component d3(n) contains some annual cycle as well as
some large timescale variation with a (8-16) months dynamic.
Therefore to extract annual cycle component xa(n), the detail
components two and three of the direct output are combined
D = d2 + d3 and then the new component D is subjected to
3-level wavelet decomposition.

The three detail components d(2)1 , d
(2)
2 , d

(2)
3 resulting from

this wavelet decomposition are combined with the first
detail component of the direct output d1, whereas the third
approximation component a(2)3 is combined with the third
approximation component a3 of the direct output to obtain
the new inter-annual component xia.

The annual cycle component and the inter-annual
component are estimated using a nonlinear autoregressive
model with exogenous inputs given by the following equations

x̂a(n+ h) = f([ya(n), ua(n)]) (6)

where ya(n) = [xa(n), xa(n − 1), ..., xa(n − m)] are the
endogenous inputs, ua(n) = [xia(n), xia(n − 1), ..., xia(n −
m)] are the exogenous inputs, m represents the memory of
the model and f(·) is a nonlinear function.

x̂ia(n+ h) = g([yia(n), uia(n)]) (7)

where yia(n) = [xia(n), xia(n − 1), ..., xia(n − m)] are the
endogenous inputs, uia(n) = [xa(n), xa(n−1), ..., xa(n−m)]
are the exogenous inputs and g(·) is a nonlinear function.

In this paper the functions f(·) and g(·) are estimates using
a RBF neural network (RBFNN) model.

49 Polibits (48) 2013ISSN 1870-9044

Multiscale RBF Neural Network for Forecasting of Monthly Hake Catches off Southern Chile

20 40 60 80 100 120 140 160

2000

4000

6000

8000

10000

(a)

Validation Samples (month)

M
on

th
ly

 I
nt

er
an

nu
al

 C
om

p.
(t

on
s)

Estimated Catches
Actual Catches

2000 4000 6000 8000 10000

2000

4000

6000

8000

10000

(b)

Actual Value

E
st

im
at

ed
 V

al
ue

Data Points
Best Linear Fit
Ideal

50 100 150

−10

0

10

20

30

(c)

Validation Samples (month)

R
el

at
iv

e
E

rr
or

 (
%

)

Fig. 3. Three-step-ahead forecasting for inter-annual component

C. RBF neural network model

The output of the RBFNN is obtained as

y =

Nh∑
j=1

bjφj(‖ (zi − vji) ‖2) (8)

where Nh is the number of hidden nodes, z notes the
regression vector containing 2m lagged values, [b1, . . . bNh

]
represents the linear output parameters, v = [vj1, v2, . . . vj2m]
denotes the nonlinear parameters, and φj(·) are hidden
activation functions, which is given by:

φj(λ) =
1√

1 + λ
(9)

In order to estimate the linear parameters and the nonlinear
parameters of the RBFNN forecaster the separable nonlinear
least squares algorithm is used, which is based on least
square (LS) method [13] and Levenberg-Marquardt (LM)
algorithms [14]. The LS algorithm is used to estimate the
parameters bj , whereas the LM algorithm is used to calibrate
the nonlinear parameters vji. For any given representation

of the nonlinear parameters, the optimal values of the linear
parameters are obtained using the LS algorithm as follows:

b = Φ†X (10)

where X is the desired output patter vector and Φ† is the
Moore-Penrose generalized inverse of the activation function
output matrix Φ [13].

Once linear parameters are obtained, the LM algorithm
adapts the nonlinear parameters of the hidden activation
functions minimizing mean squared error. Finally, the LM
algorithm adapts the nonlinear parameter θ = [bj , vji]
according to the following equations [14]:

θ(n+ 1) = θ(n) + ∆θ(n) (11a)

∆θ(n) = (ξξT + µI)−1ξT e (11b)

where ξ represents the Jacobian matrix of the error vector
evaluated in θ and ei is the error vector of the RBFNN for
i-patter, I denotes the identity matrix and the parameter µ is
increased or decreased at each step of the LM algorithm.

50Polibits (48) 2013 ISSN 1870-9044

Nibaldo Rodriguez, Lida Barba, Jose Miguel Rubio L.

20 40 60 80 100 120 140 160

2000

4000

6000

8000

10000

12000

(a)

Validation Samples (month)

R
aw

 M
on

th
ly

 C
at

ch
es

 (
to

ns
)

Raw Actual Catches: X
Estimated Catches: X

a
+X

ia

2000 4000 6000 8000 10000 12000

2000

4000

6000

8000

10000

12000

(b)

Actual Value

E
st

im
at

ed
 V

al
ue

Data Points
Best Linear Fit
Ideal

50 100 150

−15

−10

−5

0

5

10

15

(c)

Validation Samples (month)

R
el

at
iv

e
E

rr
or

 (
%

)

Fig. 4. Three-step-ahead forecasting for raw hake catches vs estimated hake catches

D. Performance Metrics

The forecasting accuracy is evaluated according to the root
mean squared error (RMSE), mean absolute error (MAE),
mean absolute percentage error (MAPE) and relative error
(RE). The forecasting accuracy is better when the values of
these measures are smaller. The definition of these metrics are
given as follows:

RMSE =

√√√√ 1

M

M∑
j=1

(xi − x̂i)2 (12)

MAE =
1

M

M∑
j=1

|(xi − x̂i)| (13)

MAPE =
1

M

M∑
j=1

|(xi − x̂i)/xi| (14)

RE = (xi − x̂i)/xi (15)

where xi is the actual value at time i, x̂i is the forecasted
value at time i and M is the number of testing samples.

III. DISCUSSION

Total monthly hake catches off southern Chile were taken
from Statistical Fishery Yearbooks (www.sernapesca.cl) for
monthly period from January 1963 to December 2008 as
shown in Figure 5(a), with a total of N = 552 observations.
All raw monthly catches data set after subjected to the
extraction process of components based on 3-level wavelet
decomposition (illustrated in Figure 5), allowed to obtain
the inter-annual cycle component and the annual component,
which are shown in Figure 5(b) and Figure 5(c); respectively.
Once the annual cycle and the inter-annual components were
identified, the data set is divided into two parts: a training
data set (T=370 observations) and a test data set (M=182
observations).

The training data is firstly used to choose the parameters of
the RBFNN models, and the testing data set is used to compute
the performance metrics of the models and for validation
purposes. The RBFNN was calibrated with 2m = 22 previous
months as input data due to the annual cycle effect of monthly
hake catches. Finding the optimal number of hidden nodes is

51 Polibits (48) 2013ISSN 1870-9044

Multiscale RBF Neural Network for Forecasting of Monthly Hake Catches off Southern Chile

24 48 72 96 120 144 168 192 216 240 264 288 312 336 360 384 408 432 456 480 504 528 552

3000

6000

9000

12000

15000

(a) Raw Hake Time Series

Time (From Jan−1963 to Dec−2008)

M
on

th
ly

 C
at

ch
es

 (
to

ns
)

36 72 108 144180 216252 288324 360396 432468 504540

3000

6000

9000

12000
(b) Inter−annual Hake Time Series

Time (From Jan−1963 to Dec−2008)

M
on

th
ly

 C
at

ch
es

 (
to

ns
)

36 72 108 144180 216252 288324 360396 432468 504540
−6234

−4000

−2000

2000

4000

6000

8817
(c)Annual Hake Time Series

Time (From Jan−1963 to Dec−2008)

M
on

th
ly

 C
at

ch
es

 (
to

ns
)

Fig. 5. Reconstruction of hake catches data derived from SWT

a complex problem, but in all our experiments the number of
hidden nodes is set to log(T) . In the training process overall
hidden weights were initialized with the training catches data
and the stopping criterion was three iterations. After of the
training process, the better architecture was calibrated with
22 input nodes, 6 hidden nodes and one output nodes and is
denoted as RBFNN(22,6,1).

Now we present the 3-month-ahead forecasting results
obtained with the RBFNN(22,6,1) model during the testing
phase, whose results are illustrated in Figures 2, 3 and 4;
respectively. Figure 2(a) provides observed annual cycle
component versus forecasted annual cycle component, while
that Figure 3(a) shows observed inter-annual component
versus forecasted inter-annual component. On of other
hand, Figures 2(b) and 3(b) show the regression curve
between observed components and estimated components.
From Figures 2(b) and 3(b) can be seen a good fit of the data
to line 1 : 1 with a 98% and 99% of the explained variance for
annual component and inter-annual component; respectively.

Figure 4(a) provides raw monthly hake catches data versus
forecasted hake catches, whose forecasting behavior is very

accurate for testing data with a 99% of explained variance
(Figure 4(b)), a MAE of 45 tons and a RMSE of 61 tons,
while the explicated variance was of 99%. On the one hand,
Figures 2(c), 3(c), and 4(c) depict relative error versus the
predicted catches obtained by the RBFNN(22,6,1) model. It
can be observed, that an important fraction of the catches
tested are acceptable with residuals ranging from ±5%.

IV. CONCLUSION

In this paper a 3-step-ahead forecasting strategy for
monthly hake catches data set was proposed. The reason
of the improvement in forecasting accuracy was due to use
multi-scale stationary wavelet decomposition to separate both
the annual and inter-annual components of the raw time series,
since the behavior of each component is more smoothing than
raw data set.

The forecasting strategy was applied to the monthly hake
catches of the southern zone of Chile and the results show
that 11 previous months of the annual component and
11 previous months of the inter-annual component contain
valuable information to explicate a highest variance level.

52Polibits (48) 2013 ISSN 1870-9044

Nibaldo Rodriguez, Lida Barba, Jose Miguel Rubio L.

Finally, the 3-step-ahead RBFNN(22,6,1) forecasting model
can be suitable as a very promising methodology to any other
marine species of the fisheries industry.

ACKNOWLEDGMENT

This research was partially supported by the Chilean
National Science Fund through the project Fondecyt-Regular
1131105 and by the VRIEA of the Pontificia Universidad
Católica de Valparaı́so.

REFERENCES

[1] K. I. Stergiou and E. D. Christou, “Modelling and forecasting annual
fisheries catches: comparison of regression, univariate and multivariate
time series,” Fisheries Research, vol. 25, pp. 105–138, 1996.

[2] K. I. Stergiou, “Prediction of the mullidae fishery in the eastern
mediterranean 24 months in advance,” Fisheries Research, vol. 9, issues
1, pp. 67–74, 1990.

[3] J. C. Gutirrez-Estrada, C. Silva, E. Yañez, N. Rodrguez, and I. Pulido-
Calvo, “Monthly catch forecasting of anchovy engraulis ringens in the
north area of Chile: Non-linear univariate approach,” Fisheries Research,
vol. 86, pp. 188–200, 2007.

[4] J. Gutirrez-Estrada, E. Yañez, I. Pulido, C. Silva, F. Plaza, and
C. Borquez, “Pacific sardine (sardinops sagax, jenyns 1842) landings
prediction: A neural network ecosystemic approach,” Fisheries Research,
vol. 100, pp. 116–125, 2009.

[5] E. Yañez, F. Plaza, J. Gutierez, N. Rodriguez, M. Barbieri, I. Pulido, and
C. Borquez, “Anchovy (engraulis ringens) and sardine (sardinops sagax)
abundance forecast of northern Chile: A multivariate ecosystemic neural
network approach,” Progress in Oceanography, vol. 87, pp. 242–250,
2010.

[6] O. Kisi, “Stream flow forecasting using neuro-wavelet technique,”
Hydrological Processes, vol. 22, issues 20, pp. 4142–4152, 2008.

[7] F. K. Nima A., “Day ahead price forecasting of electricity markets by
a mixed data model and hybrid forecast method,” International Journal
of Electrical Power & Energy Systems, vol. 30, issue 9, pp. 533–546,
2008.

[8] Z. Bai-Ling, C. Richard, M. Jabri, D. Dersch, and B. Flower, “Multires-
olution forecasting for futures trading using wavelet decompositions,”
IEEE Transaction on neural networks, vol. 12, pp. 765–775, 2001.

[9] R. R. Coifman and D. L. Donoho, “Translation-invariant de-noising,”
in Lecture Notes in Statistics: Wavelets and Statistics. Springer-Verlag,
1995.

[10] G. Nason and B. Silverman, “The stationary wavelet transform and some
statistical applications.” in In: Lecture Notes in Statistics: Wavelets and
Statistics, 1995.

[11] J. Pesquet, H. Krim, and H. Carfantan, “Time-invariant orthonormal
wavelet representations,” IEEE transactions on signal processing,
vol. 44, pp. 1964–1970, 1996.

[12] D. B. Percival and A. T. Walden, Wavelet Methods for Time Series
Analysis, C. U. Press, Ed. Cambridge, England, 2000.

[13] D. Serre, Matrices: theory and applications, Springer, Ed. New York,
2002.

[14] D. Marquardt, “An algorithm for least-squares estimation of nonlinear
parameters,” Journal of the Society for Industrial and Applied
Mathematics, vol. 11(2), pp. 431–441, 1963.

53 Polibits (48) 2013ISSN 1870-9044

Multiscale RBF Neural Network for Forecasting of Monthly Hake Catches off Southern Chile

Abstract—Several changes in the macro environment of the

companies over the last two decades have meant that the

competition is no longer constrained to the product itself, but the

overall concept of supply chain. Under these circumstances, the

supply chain management stands as a major concern for

companies nowadays. One of the prime goals to be achieved is the

reduction of the Bullwhip Effect, related to the amplification of

the demand supported by the different levels, as they are further

away from customer. It is a major cause of inefficiency in the

supply chain. Thus, this paper presents the application of

simulation techniques to the study of the Bullwhip Effect in

comparison to modern alternatives such as the representation of

the supply chain as a network of intelligent agents. We conclude

that the supply chain simulation is a particularly interesting tool

for performing sensitivity analyses in order to measure the impact

of changes in a quantitative parameter on the generated Bullwhip

Effect. By way of example, a sensitivity analysis for safety stock

has been performed to assess the relationship between Bullwhip

Effect and safety stock.

Index Terms—Artificial Intelligence, bullwhip effect,

simulation, supply chain management.

I. INTRODUCTION

A supply chain encompasses all participants and processes

involved in satisfying customer demands around some

products. The supply chain management covers, therefore,

activities related to provisioning, production and distribution of

the product, all of them placed between an upper node, which

we will call factory, and a lower node, which we call shop

retailer.

Thus, we must consider two main flows along it: the

materials flow, including the distribution of the product from

the factory to the shop retailer (downstream flow) and the

information flow, which refers to transferring orders from the

customer by the remaining members (upstream flow).

Analyzing the supply chain, Forrester [1] noted that small

changes in customer demand are highly amplified along the

supply chain, leading it to larger variations in demand

supported by the different levels, as they are further away from

customer. This is called the Bullwhip Effect (or Forrester

Effect), which, according to the subsequent research by Lee et

al. [2], is due to four main causes: errors in the forecasts of

demands, inadequate lot sizing, variations in product prices

over time, and the rationing policy for fear of stock breakage.

There have been several changes in the last two decades in

the macro environment of the companies that have set up a new

business perspective. This has led to the perception that

competition is no longer limited to the product itself, but what

really competes is the overall concept of the supply chain. From

this perspective, the production function is considered to have

a strategic role as a source of competitive advantage, so that the

practices related to the supply chain management now

represent one of the main concerns of business.

In these circumstances, it is especially emphasized the

importance of proper management of the supply chain

regarding different objectives. One of them is undoubtedly

reducing the Bullwhip Effect. In fact, Disney and Towill [3]

demonstrated that the Bullwhip effect leads the supply chain to

unnecessary costs that can represent, in some cases, more than

30% of the total costs thereof. That is to say, the Bullwhip

Effect can be considered as one of the main causes of

inefficiencies in supply chain management, which is produced

by the conducts of the various players involved in it.

In this context, this work proposes the application of

modern simulation techniques to the study of Bullwhip Effect

in a supply chain.

The authors recently studied the subject through a

multiagent approach in [4], and now, they proposes the use of

simulation tools to complement the analysis. To develop the

model, we have used the software ARENA 11.0. From this

perspective, we will do simultaneously a comparative

evaluation of the two alternatives, in order to assess the

potential of each one and to open new ways of research of this

problem.

The presented document is divided into four sections

besides this introduction. Section 2 shows a review of the most

relevant and recent literature on the subject. Section 3 describes

the model which we have created, with the various elements

that compose it. Section 4 presents the results of applying the

model on different series. Finally, Section 5 presents the

conclusions according to the planned objectives.

Supply Chain Management

 by Means of Simulation
Borja Ponte, David de la Fuente, Raúl Pino, Rafael Rosillo, and Isabel Fernández

Manuscript received on July 24, 2013; accepted for publication on
September 30, 2013.

Borja Ponte is a PhD student at the Polytechnic School of Engineering

(University of Oviedo), Campus de Viesques s/n, CP 33204, Gijón (Asturias),
Spain (e-mail: uo183377@uniovi.es).

David de la Fuente is with the Polytechnic School of Engineering

(University of Oviedo), Campus de Viesques s/n, CP 33204, Gijón (Asturias),
Spain (e-mail: david@uniovi.es).

Raúl Pino is with the Polytechnic School of Engineering (University of

Oviedo), Campus de Viesques s/n, CP 33204, Gijón (Asturias), Spain (e-mail:
pino@uniovi.es).

Rafael Rosillo is with the Polytechnic School of Engineering (University of

Oviedo), Campus de Viesques s/n, CP 33204, Gijón (Asturias), Spain (e-mail:
rosillo@uniovi.es).

Isabel Fernández is with the Polytechnic School of Engineering (University

of Oviedo), Campus de Viesques s/n, CP 33204, Gijón (Asturias), Spain (e-
mail: ifq@uniovi.es).

55 Polibits (48) 2013ISSN 1870-9044; pp. 55–60

II. BACKGROUND: BULLWHIP EFFECT REDUCTION

THROUGH SIMULATION TOOLS

 Firstly, we outline the traditional solutions proposed to

mitigate the Bullwhip Effect. In the second and third, we briefly

describe the most recent applications of multiagent

methodology and simulation techniques to its reduction.

A. Traditional Solutions to the Bullwhip Effect.

 Each supply chain has its own characteristics, mainly

conditioned by the type of product which is offered to the

consumer and by the market conditions in which it moves, and

that unquestionably complicates the analysis of valid

methodologies for reducing the Bullwhip Effect. However, it is

possible to find some common problems to all of them, and

several authors have proposed general strategies to be adapted

to each particular supply chain. These traditional solutions to

Bullwhip Effect are mainly based on collaboration among the

various members of the supply chain, often sharing some

information. Thus, some practices that are carried out in some

companies and which have been successful in reducing the

Bullwhip Effect are:

 Use of Information Technology systems, such as

electronic data interchange [5].

 Postponement, which is based on a redesign of products

with the aim that the differentiation takes place in nodes

near the customer [6].

 Efficient Consumer Response (ECR). These are

associations of companies to synchronize the supply chain

[7].

 Vendor Managed Inventory (VMI). The supplier controls

the inventory of the consumer, deciding on delivery times

and quantities [8].

 Collaborative Planning, Forecasting and Replenishment

(CPFR). It means that members of the supply chain can

develop, in a collaborative way, business plans and

processes [9].

B. Multiagent Systems in the Supply Chain Management.

 The supply chain management is a highly complex problem,

conditioned by multiple agents, each of which has to serve a

large number of variables. In the last two decades, authors have

looked for different ways to optimize the management by using

new techniques based on Artificial Intelligence. Several

authors have approached the supply chain as a network of

intelligent agents. These are called multiagent systems.

 Fox et al. [10] were pioneers in the proposal of the

organization of the supply chain as a network of cooperating

intelligent agents. In their work, each agent executes one or

more functions of the supply chain, coordinating their actions

with other agents. Later, Shen et al. [11] developed the tool

MetaMorph II, which, through an agent-based architecture,

integrates partners, suppliers and customers with a lead

company through their respective mediators within a supply

chain network via the Internet.

 Kimbrough et al. [12] studied whether a structure based on

agents could be valid for the supply chain management, and

they reached the conclusion that the agents were able to

effectively play the well known Beer Game [13], reducing the

Bullwhip Effect. Moxaux et al. [14] used a multiagent system

for modeling the behavior of each company in the supply chain.

The paper proposes a variant of the Beer Game, which they

called "Quebec Wood Supply Game”.

 Liang y Huang [15] developed, based on a multiagent

architecture, a model which allowed predicting the order

quantity in a supply chain with several nodes, where each one

of them could use a different system of inventory. De la Fuente

and Lozano [16] presented an application of Distributed

Intelligence to reduce the Bullwhip Effect in a supply chain,

based on a genetic algorithm. Zarandi et al. [17] introduced

Fuzzy Logic in the analysis.

 Wu et al. [18] applied the multiagent methodology to

establish a supply chain model and to analyze in detail the

Bullwhip Effect created along the chain, considering the non

existence of information exchange among different members.

One of the last studies in that regard is the one by Saberi et al.

[19]. It develops a multiagent system, and which links the

various agents that form it, emphasizing the collaborative

aspect. Recently, Ponte and De la Fuente [4] proposed a

multiagent model for managing the supply chain, based on

collaboration between the various members, showing that this

alternative allows a great reduction of Bullwhip Effect.

 We can conclude that several changes in the last decades

have become the supply chain in a complex system that

requires modern methodologies for its analysis, seeking to

optimize their management.

C. Supply Chain Simulation.

 Digital simulation is a technique that allows imitating in a

computer the behavior of a real system. Although it has been

used for several decades, the continuous evolution of

computers increases significantly its applications. It allows

studying, in highly complex systems, the effect of small

changes, which in real conditions it would not be feasible to

analyze.

 Manyem and Santos [20] simulated a supply chain of only

two stages, with the aim of studying the propagation of

Bullwhip Effect between two consecutive levels and, thus, the

impact of this phenomenon in the profitability of the

companies. They focused on the consequences of increasing

the lead time, demonstrating that it introduced a great

uncertainty to the chain, which meant severe disruption of

performance.

 Merkureyev et al. [21] simulated, using ARENA 5.0, a

supply chain of four levels and described the impact on the

Bullwhip Effect of the two supply chain information

management policies (centralized and decentralized

information) combined with two management policies

inventory (policy min-max and stock-to-demand). Of these

combinations, four different models emerged, concluding that

the Bullwhip effect appeared in all cases, but not to the same

extent, demonstrating that centralized information policy and

the policy of stock-to-demand work best in Effect terms

Bullwhip reduction.

56Polibits (48) 2013 ISSN 1870-9044

Borja Ponte, David de la Fuente, Raúl Pino, Rafael Rosillo, Isabel Fernández

 Boute and Lambrecht [22] simulated the supply chain

through a large spreadsheet, oriented to analyze the relationship

between the level of customer service and the Bullwhip Effect.

To do this, they studied various changes in the parameters that

define replenishment policies at different levels. The authors

concluded that the Bullwhip Effect can be reduced, even

increasing fluctuations in inventories, but at the cost of

lowering the level of customer service.

 So, in contrast with multiagent systems, we refer in this

section to simulations that do not introduce intelligence to the

model so that agents do not have decision-making capacity in

search of an optimal solution, but merely they follow a

sequence of planned operations. We can conclude, after

studying the literature, that these simulations are mainly used

to analyze the consequences of the change of certain variables

on the Bullwhip Effect, which also allows us to propose new

solutions. We also noticed that there are not, compared to other

techniques, many studies about the applications of supply chain

simulation to analyze the Bullwhip Effect.

III. MODEL

 To prepare the base model, we have considered a traditional

supply chain with linear structure, which consists of five main

levels: Consumer, Shop Retailer, Retailer, Wholesaler and

Factory. Fig. 1 shows the graphical representation of the levels,

indicating the materials flow, which occurs from the top of the

chain (Factory) to the lower levels (Consumer). Therefore, it is

called downstream flow. The information flow is considered to

be in the opposite way, which is called downstream flow.

 To implement the model, we have used ARENA 11.0

(developed by Rockwell Software).

 The model is based on four Communication Channels (one

between Consumer and Shop Retailer, other between Shop

Retailer and Retailer, other between Retailer and Wholesaler,

and the last between Wholesaler and Factory). Each one is

similar to that shown in Fig. 2, which corresponds to a

screenshot of the Channel Communication between the Shop

Retailer and the Retailer. In each one of them, the simulation

begins with the level receives the order made by the previous

one. Orders placed by level n+1 of the supply chain in period t

(O,t,n+1) will mean the demand in the same period of the

previous level (D,t,n), which is the main link connecting the

different levels. It is expressed in (1).

 1


n

t

n

t
OD (1)

 Then, demand is stored in an external file for later

analysis. Next, it evaluates whether the stock available at the

level (IS,t,n), which has been planned according to the forecast

of the demand, is sufficient to satisfy demand (D,t,n). If it is

sufficient, it decreases the retailer's stock (FS,t,n) and it sends

the material (Y,t,n). The stockout would be zero (SO,t,n). If it

is not enough, stockout is generated in the level, which will be

repaired in the next period, leaving the retailer's inventory to

zero. In either case, it closes the communication between the

two levels of the supply chain until the next period. Obviously,

the initial stock of each level (IS,t,n) coincides with the sum of

the final stock of this level in the previous period (FS,t-1,n) and

the order made in the previous period (O,t-1,n). All this is

expressed in (2), (3), (4), and (5).

Fig. 2. Example of the Communication Channel between Shop Retailer and Retailer in the developed model.

Fig. 3. Example of Forecasting Demand System of the Shop Retailer in the developed model.

Fig. 1. Supply Chain Structure.

57 Polibits (48) 2013ISSN 1870-9044

Supply Chain Management by Means of Simulation

 n

t

n

t

n

t

n

t
SOISDY

1
},min{


 (2)

 }0,min{
n

t

n

t

n

t
DISFS  (3)

 }0,max{
n

t

n

t

n

t
ISDSO  (4)

 n

t

n

t

n

t
OFSIS

11 
 (5)

 Moreover, the model contains four Forecasting Demand

Systems, one for each one of the four main levels of the supply

chain. It is based on storing the last five demands (D,t,n-i)

received from the previous level of the supply chain and, based

on them, the estimation of demand in the next period (FD,t,n).

Thereby, the technique for the demand forecasting is a moving

average of five periods. We chose this method becasuse we will

simulate the system with random time series, which are

statistical distributions. It is not necessary to use more complex

forecasting methods, oriented to time series with periodicity

and tendency. We can express the forecasting method in (6).

5

54321

n

t

n

t

n

t

n

t

n

tn

t

DDDDD
FD




 (6)

 From there, the order which will be made by each level

(O,t,n) considers the forecasting (FD,t,n), taking into account

available stock (IS,t,n), stockout generated in the previous

period (SO,t-1,n) and the safety stock which has decided the

level (SS,n). It is expressed in (7). Furthermore, these data are

also stored in an external file for later analysis. As an example,

a screenshot of the Forecasting Demand Systems of the Retailer

at a time of the simulation is shown in Fig. 3.

 }0,max{
1

nn

t

n

t

n

t

n

t
SSSOISFDO 


 (7)

IV. RESULTS

Once developed the model in ARENA 11.0, we have

conducted various tests on it, mainly with the aim to evaluate

the advantages and disadvantages offered by this alternative,

compared with the multiagent methodology [4]. Draw

conclusions on the causes of the Bullwhip Effect is not the aim

of this paper.

Section 5 includes this comparison, emphasizing the

application of supply chain simulation techniques to perform

sensitivity analysis to assess the effect of changes in system

parameters on the Bullwhip Effect in the Supply Chain.

As an example, we detail the calculations performed to

determine the impact of the security stock in the generation of

Bullwhip Effect along a specified supply chain. For this, we

have conducted five different simulations. In the first case, all

levels of the supply chain are working without a safety stock.

In the rest, the safety stock is 5 (low), 10 (middle), 20 (high) to

40 (very high). In all cases, it was considered that the demand

follows a normal distribution with mean 100 and standard

deviation 10. Furthermore, we have carried out, in the five

different cases, a simulation of 1500 days (approximately 214

weeks), considering a training period of 100 days (14 weeks),

where the results are not considered in the calculation of final

values.

TABLE I:
RESULTS OF THE TESTS RELATED TO THE SAFETY STOCK (I)

Variance SS=0 SS=5 SS=10 SS=20 SS=40

Consumer 116.83 116.83 116.83 116.83 116.83

Shop Retailer 170.42 170.19 170.20 170.91 175.15

Retailer 261.19 261.01 261.98 267.33 291.72

Wholesaler 418.24 418.61 422.19 438.98 511.06

Factory 694.65 696.47 705.60 745.81 914.00

TABLE II:

RESULTS OF THE TESTS RELATED TO THE SAFETY STOCK (II)

Bullwhip

Effect

SS=0 SS=5 SS=10 SS=20 SS=40

Shop Retailer 1.459 1.457 1.457 1.463 1.499

Retailer 1.533 1.534 1.539 1.564 1.666

Wholesaler 1.601 1.604 1.612 1.642 1.752

Factory 1.661 1.664 1.671 1.699 1.788

Supply Chain 5.946 5.961 6.040 6.384 7.823

Increase over
SS=0

– 0.25% 1.56% 7.37% 31.57%

Table I shows the results of the five tests. It contains the

variance of orders placed by each member of the supply chain

throughout the simulation period. Note that the variance of the

factory refers to the production rate, since it is the highest level

of the chain.

Many authors quantify the Bullwhip Effect in supply chain

as follows:

2

2

dc

df

BW



 (8)

where 𝜎𝑑𝑐
2 is the variance in consumer demand for the product,

and 𝜎𝑑𝑓
2 represents the variance in the rate of the factory

production.

Likewise, the Bullwhip Effect generated at each step can be

defined as the ratio of the variance in orders sent to the next

level of the supply chain (𝜎𝑜𝑢𝑡
2), and the variance in orders

received from the previous level of the supply chain (𝜎𝑖𝑛
2). It is

expressed in (9).

2

2

in

out

i
BW




 (9)

This allows expressing the Bullwhip Effect along the entire

supply chain as the product of the ratios that define the

Bullwhip Effect at each level.

 




n

i

i
BWBW

1

 (10)

Thereby, Table II contains the results of the test, but oriented

Bullwhip Effect generation. It contains both the Bullwhip

Effect generated at different levels, by (9), and the overall

Bullwhip Effect generated in the supply chain in each case, by

(10). Besides, it includes in the four cases in which it works

with safety stock, the increase in the Bullwhip Effect related to

the case with no safety stock.

58Polibits (48) 2013 ISSN 1870-9044

Borja Ponte, David de la Fuente, Raúl Pino, Rafael Rosillo, Isabel Fernández

Fig. 4. Relationship between safety stock and the Bullwhip Effect.

Fig. 5. Variance of the various levels in the different cases of safety stock.

Fig. 6. Evolution in the demands from week 171 to week 200 in the simulation

with 40 units of Safety Stock in each level.

Tables I and II show the relation in the studied time serie,

between the safety stock and the Bullwhip Effect generated in

the supply chain.

First, it is possible to note that in all cases the amplification

of the variance of the demand for each level is increased as it

moves away from the consumer. Moreover, the consideration

of safety stock, in order to decrease the probability of stockout,

increases the amplification of the variability of demands. That

is, it is possible to conclude that in this case the Bullwhip Effect

is greater when safety stock is increased. However, this

increase is small, relatively speaking, while the safety stock

used is not high.

Thereby, in this case, for safety stock levels which may be

called "reasonable", its impact on the Bullwhip Effect is low.

From there, it rises considerably, as it is possible to see in Fig.

4, which seems to outline an exponential relationship between

the two variables.

Figure 5 shows the evolution of the variance of the demand

of the various levels of the supply chain in the five different

simulations throughout the simulation period (data obtained

from Table I). Finally, Fig. 6 represents, as an example,

variation of the demands in the different levels of the supply

chain for thirty intermediate weeks (from 171 to 200) in the

simulation related to 40 units of safety stock.

Finally, we want to recall that the purpose of this paper is not

to assess the effect of stock safety in the Bullwhip Effect

generation (it has only been done as an example for a particular

time series and without the aim of drawing conclusions), but to

evaluate the application of supply chain simulation techniques

in the analysis of the Bullwhip Effect.

V. CONCLUSION: COMPARATIVE ANALYSIS OF TOOLS

 This work complements the study of the Bullwhip Effect

through multiagent methodology conducted by the same

authors recently [4]. Having developed and implemented both

tools based on a similar model, and after analyzing them with

sufficient detail, we can conclude that:

 The approach to the problem through a multiagent system

is a suitable alternative for the development of intelligent

software, which is able to decide, based on a set of

solutions available, the optimum for the system, according

to selected criteria (related to improve the supply chain

management). Through coordination between the various

agents which simulate each level, this option allows to split

a highly complex problem into a set of smaller problems.

It is also possible to introduce advanced forecasting

methods, offering a high performance in reducing

Bullwhip Effect. Thus, the multiagent methodology

improves supply chain management through collaboration

between the different levels of it.

 The multiagent system can also analyze the causes of the

Bullwhip Effect, especially the main one, related to errors

in demand forecasts. However, sensitivity analysis, based

on the study of the impact of a particular quantitative

parameter on the Bullwhip Effect, simulation is a more

appropriate tool. It allows this study with a high ease and

efficiency. Through the supply chain simulation, it is

affordable to simulate a time period large enough in

different conditions, which it allows to decide which is the

best alternative. The risk assumed with this alternative is

minimal compared to the evaluation of various alternatives

in the real supply chain. From there, it is possible to

achieve a better understanding of the phenomenon, which

may help to mitigate their appearance in order to reduce

their harmful impact on the supply chain.

ACKNOWLEDGMENTS

This work was supported by the Government of the

Principality of Asturias, through the “Severo Ochoa”

Predoctoral Grants for Research and Teaching of the

Principality of Asturias.

Consumidor Detallista Minorista

59 Polibits (48) 2013ISSN 1870-9044

Supply Chain Management by Means of Simulation

REFERENCES

[1] J.W. Forrester, “Industrial dynamics”, MIT Press. Cambridge, MA, 1961.

[2] H.L. Lee, V. Padmanabhan, and S. Whang, “The bullwhip effect in

supply chains”, Sloan Management Review. Vol. 38(3), pp. 93–102,

1997.

[3] S.M. Disney, and D.R. Towill, “The effect of Vendor Managed Inventory

(VMI) dynamics on the Bullwhip effect in supply chain”, International

Journal of Production Economics. Vol. 85, pp. 199–215, 2003.

[4] B. Ponte, and D. De la Fuente, “Multiagent System to Reduce the

Bullwhip Effect”, Proceedings of the 2013 International Conference on

Agents and Artificial Intelligence. Vol. 1, pp. 67–76, 2013.

[5] J.A. Machuca, and R. Barajas “The impact of electronic data interchange

on reducing bullwhip effect and supply chain inventory cost”,

Transportation Research Part E. Vol. 40, pp. 209–228, 2004.

[6] L. Chen, and L. Lee Hau, “Information Sharing and Order Variability

Control Under a Generalized Demand Model”, Management Science.

Vol. 55(5), pp. 781–797, 2009.

[7] S.M. Disney, and D.R. Towill, “Transfer function analysis of forecasting

induced bullwhip in supply chain”, International Journal of Production

Economics. Vol. 78, pp. 133–144, 2002.

[8] J. Holmstrom, “Product range management: a case study of supply chain

operations in the European grocery industry”, Supply Chain

Management. Vol. 2(3), pp. 107–115, 1997.

[9] Y.F. Ji, and H.L. Yang, “Bullwhip Effect Elimination in Supply Chain

with CPFR”, Proceedings of the 2005 International Conference on

Management Science & Engineering. Vol 1–3, pp. 737–740, 2005.

[10] M.S. Fox, J.F. Chionglo, and M. Barbuceanu, “The Integrated Supply

Chain Management System”, Internal Report, Univ. of Toronto, 1993.

[11] W. Shen, D. Xue, and D.H. Norrie, “An Agent-Based Manufacturing

Enterprise Infrastructure for Distributed Integrated Intelligent

Manufacturing Systems”, Proceedings of the Practical Application of

Intelligent Agents and Multi-Agent Systems PAAM'98, London, 1998.

[12] S.O. Kimbrough, D.J. Wu, and F. Zhong, “Computer the beer game: can

artificial manage supply chains?” Decision Support Systems. Vol. 33, pp.

323–333, 2002.

[13] J.D. Sterman, “Modelling managerial behaviour: Misperceptions of

feedback in a dynamic decision making experiment”. Management

Science. Vol. 35(3), pp. 321–339, 1989.

[14] T. Moyaux, B. Chaib-draa, and S. D’Amours, “An agent simulation

model for the Quebec forest supply chain”. Lecture Notes in Artificial

Intelligence. Vol. 3191, pp.226–241, 2004.

[15] W.Y. Liang, and C.C. Huang, “Agent-based demand forecast in multi-

echelon supply chain”. Decision Support Systems. Vol. 42(1), pp. 390–

407, 2006.

[16] D. De la Fuente, and J. Lozano, “Application of distributed intelligence

to reduce the bullwhip effect”. International Journal of Production

Research. Vol. 44(8), pp. 1815–1833, 2007.

[17] M.H. Zarandi, M. Pourakbar, and I.B. Turksen, “A fuzzy agent-based

model for reduction of bullwhip effect in supply chain systems”, Expert

systems with applications. Vol. 34(3), pp. 1680–1691, 2008.

[18] S.N. Wu, W.H. Gan, and F.M. Wei, “Analysis on the Bullwhip Effect

Based on ABMS”, Procedia Engineering. Vol. 15, 2011.

[19] S. Saberi, A.S. Nookabadi, and S.R. Hejazi, “Applying Agent-Based

System and Negotiation Mechanism in Improvement of Inventory

Management and Customer Order Fulfilment in Multi Echelon Supply

Chain”, Arabian Journal for Science and Engineering. Vol. 37(3), pp.

851–861, 2012.

[20] P. Manyem, and D. Santos, “Factors that Influence the Bullwhip Effect

and its Impact on Profitability: A Simulation Study of Supply Chains”,

Proceedings of the 4th Annual International Conference on Industrial

Engineering Theory, Applications and Practice. San Antonio, 1999.

[21] Y. Merkureyev, J. Petuhova, and M. Buikis, “Simulation based statistical

analysis of the bullwhip effect in supply chains”, 18th European

Simulation Multiconference Networked Simulations and Simulaed

Networks ESM 2004, pp. 13–16, 2004.

[22] R. Boute, and M. Lambrecht, “Exploring the Bullwhip Effect by Means

of Spreadsheet Simulation”. Open access publications form Katholieke

Universiteit Leuven, 2009.

60Polibits (48) 2013 ISSN 1870-9044

Borja Ponte, David de la Fuente, Raúl Pino, Rafael Rosillo, Isabel Fernández

A POS Tagger for Social Media Texts
Trained on Web Comments

Melanie Neunerdt, Michael Reyer, and Rudolf Mathar

Abstract—Using social media tools such as blogs and forums
have become more and more popular in recent years. Hence, a
huge collection of social media texts from different communities
is available for accessing user opinions, e.g., for marketing
studies or acceptance research. Typically, methods from Natural
Language Processing are applied to social media texts to
automatically recognize user opinions. A fundamental component
of the linguistic pipeline in Natural Language Processing
is Part-of-Speech tagging. Most state-of-the-art Part-of-Speech
taggers are trained on newspaper corpora, which differ in many
ways from non-standardized social media text. Hence, applying
common taggers to such texts results in performance degradation.
In this paper, we present extensions to a basic Markov model
tagger for the annotation of social media texts. Considering
the German standard Stuttgart/Tübinger TagSet (STTS), we
distinguish 54 tag classes. Applying our approach improves the
tagging accuracy for social media texts considerably, when we
train our model on a combination of annotated texts from
newspapers and Web comments.

Index Terms—Natural language processing, part-of-speech
tagging, opinion mining, German.

I. INTRODUCTION

SOCIAL media applications lead to constantly growing
user generated content in the Web. Different types of

social media tools, e.g., blogs, forums as well as news
sites allow users to post Web comments. This kind of
consumer-to-consumer communication can efficiently be used
to access user opinions for marketing studies or acceptance
research. A beneficial property of Web comments is the fact
that the data is natural and authentic, and public. Furthermore,
opinions from proponents, opponents as well as from impartial
persons can be obtained from different Web domains, i.e.,
different communities.

Besides automatic opinion recognition, many other Natural
Language Processing (NLP) methods such as syntactical
parsing, machine translation or text summarization require
Part-of-Speech (POS) tag information for a given word
sequence. State-of-the-art POS taggers are basically developed
for the task of tagging standardized texts such as newspaper
articles which are grammatically approved. Hence, parameter
estimation is usually performed on newspaper text corpora
as training data. Web comments, however, differ from

Manuscript received on August 2, 2013; accepted for publication on
September 30, 2013.

The authors are with the Institute for Theoretical Information
Technology, RWTH Aachen University, Germany (e-mail: {neunerdt, reyer,
mathar}@ti.rwth-aachen.de).

standardized text, since they are characterized by a spoken
language, a dialogic and an informal writing style. This poses
some special challenges to deal with in developing methods
for automatic POS tagging of Web comments. These are
particularly, the treatment of unknown (out-of-vocabulary)
words and the different grammatical structure of social
media texts in contrast to newspaper text. Furthermore,
text genre specific manually annotated corpora, i.e., Web
comments are required for training and testing. To the best
of our knowledge all large manually annotated corpora are
exclusively newspaper texts.

In this work, we propose a Markov model tagger with
parameter estimation enhancements for the POS annotation
of social media texts. We apply and evaluate the tagger for
German social media texts exemplarily. In order to make our
method usable for NLP methods requiring POS information,
e.g., syntactical parsing, we use the 54 Stuttgart/Tübinger
TagSet (STTS) tag classes without any text genre specific
extensions. Web comments are not completely different from
newspaper texts. However, due to the dialogic text style, i.e.
the distribution of POS sequences changes, the grammatical
structure differs. Hence, the training is performed on a
combination of newspaper and Web comment corpora. Results
are compared to state-of-the-art/widely used POS taggers. We
particularly study the influence of additional Web comment
training data for our approach and compare results to those
achieved by methods basically developed for standardized
texts. The proposed approach outperforms state-of-the-art POS
taggers significantly for German social media texts.

The outline of this paper is as follows: Section II
summarizes the related work to provide an overview of POS
tagging. In Section III we introduce WebTagger for automatic
POS tagging applied to social media texts. Section IV
presents experimental results considering different aspects,
particularly discussing the adaptability to other languages
in Subsection IV-E. Section V covers the conclusion and
discusses future work.

II. RELATED WORK

Different statistical approaches have been proposed to solve
the task of automatic POS tagging. Typically, POS taggers
utilize two different probabilistic models, a Maximum entropy
model or a Markov model capturing lexical and contextual
information. Common Maximum entropy based taggers are
proposed in [1], [2]. These approaches are adapted by using

61 Polibits (48) 2013ISSN 1870-9044; pp. 61–68

different features for the model. Toutanova et al. [1] propose
the Stanford tagger modeling the sequence of words as
bi-directional dependency network considering lexical and
tag context information. Markov model taggers are proposed
in [3], [4], [5]. TreeTagger [4] and TnT [5] use a second order
Markov model applying some smoothing techniques for the
estimation of lexical probabilities. The Stanford tagger and
the TreeTagger are trained on corpora in different languages,
which shows their generality in application. Both taggers use
the STTS [6] tag set for German, which is commonly used
for NLP methods. Furthermore, some other machine learning
techniques, e.g., Support Vector Machines [7] and Neural
Networks [8], are applied to the problem of automatic POS
tagging.

In [9], [10] different POS taggers are compared and
evaluated for German. Schneider et al. [9] point out the
performance loss on unknown words, of a rule-based tagger
compared to a statistical tagger. Five state-of-the-art taggers
applied to Web texts are studied in [10]. Accuracy drops
significantly for different Web text genres. Hence, the
automatic annotation of Web texts is not yet a solved task.

Gimpel et al. [11], [12], [13] address the task of tagging
non-standardized texts, characterized by a high number of
unknown words. Gadde et al. [2] introduce adaptions to the
Stanford tagger to handle noisy English text. Results are
evaluated based on an SMS dataset. In [14] a twitter tagger
based on a conditional random field (CRF) with features
adapted to twitter characteristics is proposed. They propose
some additional word clustering and further improvement to
their method in [13].

III. WEBTAGGER

WebTagger has much in common with the TreeTagger [4].
The taggers differ in the way the lexical probabilities are
estimated, in particular for unknown words. We use the
STTS tagset for annotation. Annotation rules for social
media characteristics are given in [15], [16] and [17]. The
general tagger model is taken from [4] and explained in
Subsection III-A. Subsection III-B comprises our proposed
enhancements to the basic tagger to improve POS tagging
performance for social media texts. In contrast to other
approaches estimation of lexical probabilities is extended
by mapping unknown tokens (words), to tokens known
from training or to some regular expressions. This mapping
improves the estimation of lexical probabilities. Furthermore,
prefix and suffix lexicon information are efficiently combined.
Finally, in contrast to standard methods we suggest to use a
semi-supervised auxiliary lexicon instead of information from
automatically tagged or unsupervised training data.

A. Model

As tagger model we use an enhanced standard Markov
model. In this subsection we explain the basic model. The
aim of the tagger is to predict the associated POS tag sequence

t1, . . . , tn, . . . , tN with tn ∈ T (STTS) for a given sequence of
tokens w1, . . . , wn, . . . , wN with wn ∈ W , where W contains
all possible tokens. In order to achieve that the optimization
problem

t̂N1 = argmax
tN1

P (tN1 , w
N
1)

using the notation for a sequence of POS tags tnl

tnl =

{
(tl, . . . , tn) 1 ≤ l ≤ n ≤ N
(t1, . . . , tn) l ≤ 0

with l ∈ Z, n ∈ N, and l ≤ n ≤ N is solved. The sequence of
tokens wn

l is defined analogously. This is a huge optimization
problem which is simplified by the following approach. First,
the probability chain rule for wN and tN to describe the joint
probability by conditional probabilities is applied:

P (wN
1 , t

N
1) = (1)

P (wN | w1
N−1, tN1)P (tN | wN−1

1 , tN−11)P (wN−1
1 , tN−11).

As in [4] we use the assumptions

P (wn | wn−1
1 , tn1) = P (wn | tn),

P (tn | wn−1
1 , tn−11) = P (tn | tn−1n−k)

with k ∈ N. Applying those assumptions, a simple law of
conditional probability, and iterating the procedure described
in (1) leads to the equation:

P (wN
1 , t

N
1) =

N∏
n=1

P (tn | wn)

P (tn)︸ ︷︷ ︸
Lexical Prob.

p(wn)P (tn | tn−1n−k)︸ ︷︷ ︸
Transition Prob.

.

The assumptions are also referred to as k-order Markov model
for transition probabilities and zero-order Markov model for
the lexical probabilities. Moreover, the token probabilities
p(wn) do not change with the tag sequences, and hence,
may be omitted. Overall, this allows to model transition and
lexical probabilities independently and the optimization task
is rephrased as

t̂N1 = argmax
tN1

{
N∏

n=1

P (tn | wn)

P (tn)
P (tn | tn−1n−k)

}
.

Before this optimization problem can be solved those prob-
abilities have to be determined. The estimation of transition
probabilities is taken from TreeTagger [4] by applying the
ID3 algorithm [18]. Due to the ungrammaticalities, particularly
given in social media texts, a high number of unseen contexts,
e.g., trigrams, might occur when applying the tagger. In order
to get reliable estimates in such cases, zero probabilities are
replaced by a predefined small value. Furthermore, we propose
to use manually annotated social media texts as additional
training data, in order to learn different tag contexts given
by the dialogic style characteristics of such texts. Lexical
probabilities are estimated by our proposed methods, described
in the following Subsection III-B.

62Polibits (48) 2013 ISSN 1870-9044

Melanie Neunerdt, Michael Reyer, Rudolf Mathar

B. Enhancements

In this subsection our enhancements to a basic Markov
model tagger are introduced. This comprises the estimation of
lexical probabilities, particularly for unknown tokens (words).
Considering the high frequency of unknown tokens and their
variability of POS classes makes the task of probability
estimation more complex compared to newspaper texts. Hence,
this problem can not be solved adequately by standard methods
and more sophisticated methods are needed.

1) Token preprocessing: The given sequence of tokens
usually contains tokens which do not occur in the training
set. The preprocessing aims at mapping these tokens to related
known tokens, if there exists a fitting token. Related tokens can
be obtained by some transformations steps described by t(wn).
These steps contain cross-language transformations as well as
some transformations specifically for German. Amongst others
character iteration correction, e.g., Helloooooo→Hello, or
Umlaut correction, e.g., Huette→Hütte (cottage), or character
correction, e.g., Kuss→Kuß (kiss). Such transformations
may be interpreted as substituting tokens by its normalized
version. Therefore, we are calling this kind of transformation
normalization. Furthermore, there are language independent
word classes which are easily recognized and anticipated using
regular expressions. Some examples are emoticons, e.g., :-)
and :(, and URLs, e.g., http://www.test.de, xy.ch, multiple
punctuation marks, e.g., and, !!!, number replacements,
e.g., 50er. The set of possible POS tags for each word class
differs from one to three. In summary, our preprocessing step
substitutes unknown tokens by its transformation, if this is
within the training set, or returns the regular expression r, if
the word is described by it or returns the marker for unknown
tokens ε. This procedure is described by the mapping function
m :W → X ∪ {ε} which is defined as

m(wn) =


/r/ wn ∈ Wr,
wn wn ∈ L \ R
t(wn) t(wn) ∈ L \ R ∧ wn /∈ L \ R
ε elsewise.

(2)

An overview of the corresponding word sets is given in Table I.

TABLE I
WORD SETS.

Word Set Description

R Tokens covered by regular expressions
L Full form lexicon created from training data

X = L ∪R Full form lexicon extended by regular expressions
W All possible tokens

The word set X contains all tokens given by the full form
lexicon L created from supervised training data, extended by
the set of words R created by all regular expressions r ∈ R
as follows:

Wr = {w ∈ W | w ∼ /r/}

indicates all tokens covered by a regular expression r ∈ R,
thus R =

.⋃
r∈RWr.

2) Parameter estimation: Before our tagger can be used for
predicting POS tag sequences, the probability parameter values
have to be estimated. Therefore, we basically use a supervised
learning approach, but extend this by some semi-supervised
learning technique which is explained in more detail in the
following section. A manually annotated training corpus

T R =
{
(ŵn, t̂n) | 1 ≤ n ≤ N

}
is used, where for each word ŵn the correct tag t̂n is known.
The lexicon is given as

L = {ŵn | 1 ≤ n ≤ N} .

We assume lexical probabilities to be position independent.
Hence, we replace P (tn | wn) = P (t | w) in the following
notation. If the word m(w) is known, i.e., it occurs in the
training set T R, the estimation is given by

P̂L(t | w) =
|
{
k | (t̂k, ŵk) = (t, w)

}
|

| {k | ŵk = w} |
,

where the index L indicates that the word w is in the lexicon L.
In the following the estimates if the word m(w) is not in

the lexicon L are described. First, we explain the estimation
of the probabilities, if the unknown word is represented by a
regular expression. The probabilities are given as

P̂R(t | r) =
|
{
k | t̂k = t ∧ ŵk ∈ Wr)

}
|

| {k | ŵk ∈ Wr} |
. (3)

Using these estimates for regular expressions enables to assign
reliable tag distributions even to previously unseen tokens from
training.

Now we deal with (still) unknown tokens. From the training
data set we determine all prefixes and suffixes of maximal
length five. The description of all tokens having the same
prefix/suffix may be realized with a regular expression. Hence,
we assess the lexical probabilities for all given prefixes and
suffixes as in (3). However, to improve the quality of our
estimation we combine the probabilities for prefixes and
suffixes as follows:

P̂PS(t | w) =

|
{
k | t̂k = t ∧ ŵk ∈ Wp(w))

}
| + |

{
k | t̂k = t ∧ ŵk ∈ Ws(w))

}
|

|
{
k | ŵk ∈ Wp(w)

}
| + |

{
k | ŵk ∈ Ws(w)

}
|

where p(w)/s(w) are the regular expressions for the
prefix/suffix of the word w. Common approaches use the joint
probabilities of the independent prefix and suffix distributions.
However, combining prefix and suffix lexical probabilities by
the arithmetic mean, makes the method robust for uncommon
prefix and/or suffix, which arise from informal writing style
characteristics, e.g., word shortenings or typing errors. The
proposed method improves tagging accuracy by 0.5 percentage
points compared to the commonly used joint probability

63 Polibits (48) 2013ISSN 1870-9044

A POS Tagger for Social Media Texts Trained on Web Comments

approach. In summary, the lexical probability is given as

P (t | w) =


P̂L(t | m(w)) m(w) ∈ L,
P̂R(t | m(w)) m(w) ∈ R \ L,
P̂PS(t | w) w ∈ (P ∪ S) \ X ,
P̂S(t | w) elsewise,

(4)

where P/S describes all tokens with known prefixes (suffixes).
The last case in the description is by default given by the
frequencies of the tags in the training set

P̂S(t | w) =
|
{
k | t̂k = t

}
|

N
,

which is independent of the word w.
3) Semi-supervised learning: Preparing a fully supervised

training text is a time-consuming job. In this subsection we
propose an alternative approach which reduces the annotation
effort considerably. The basic idea is as follows. The tagger is
used for automatic tagging of a large social media text corpus.

SL = {(wm, tm) | 1 ≤ m ≤M}

The most frequent unknown tokens, m(wm) = ε, are
determined and added to an auxiliary lexicon L+. For all
tokens wm of the auxiliary lexicon the possible tags are
manually assigned and denoted by Twm . If there is more than
one tag possible, an adequate tag distribution needs to be
assigned as well. Therefore, two approaches are utilized.

First, if at least one word ŵk of the manually annotated
training corpus has the same POS tag set as the manually
assigned set Twm , the cumulated tag distribution of those
words is taken. Hence, the lexical probability is refined as

P̂L+(t | wm) =
|
{
k | t̂k = t ∧ Tŵk

= Twm)
}
|

| {k | Tŵk
= Twm} |

,

where Tŵk
= {t̂l | ŵl = ŵk}.

Second, if there is no word with the same set of possible tags
in the training text, further manual annotation is performed. A
reliable amount of such tokens is manually annotated in the
large social media corpus SL. The resulting tag distribution
is assigned to such unknown tokens.

Such unknown tokens are often shortened verbs or wrongly
uncapitalized tokens. The following example illustrates that
particular case. Consider the word benutz (use), which in a
standardized text is just used as an imperative content word
(VVIMP). In social media texts the word is also used as
short form for the verb inflections benutze ([I] use) and
benutzt ([he] uses). Hence, the resulting tag distribution
from manual annotation of the large social media corpus
results in P (V V FIN) = 59%, P (V V IMP) = 32% and
P (V V PP) = 9%.

IV. RESULTS

Different criteria are analyzed to evaluate the proposed
approach. First, WebTagger is compared to four state-of-the-art
POS taggers, considering German Web comments. Second, the

performance improvements for each proposed enhancement
step are demonstrated. Furthermore, the improvement by using
manually annotated Web comments for training is pointed
out. Particularly, we show that using non-standardized texts
for training does not lead to a significant degradation when
applying WebTagger to standardized newspaper texts. Finally,
we study the transferability to different social media text types,
where the taggers are not trained on the particular type.

A. Corpora

Two corpora are used for the purpose of training our new
social media corpus WebTrain and a newspaper text corpus.
WebTrain corpus contains 429 Web comments collected
from Heise.de, which is a popular German newsticker
site treating different technological topics. Each of 36,000
token is annotated with manually validated POS tags and
lemmas. Annotation rules, particularly for social media text
characteristics, are taken from [16]. The average POS tag
ambiguity of tokens contained in the corpus is 2. This is
significantly higher as the ambiguity in German newspaper
texts, e.g., 1 for the TIGER corpus containing 890,000 tokens.
In order to provide a sufficiently large training data amount, we
combine WebTrain with the TIGER treebank [19] newspaper
text corpus. We call that joint-domain training. WebTrain texts
contain 18% trigrams, that never occur in the newspaper
corpus TIGER. Those trigrams constitute 6% frequency of all
WebTrain trigram counts. Both results motivate the need of text
genre specific training data for reliable estimation of transition
probabilities, e.g., for trigrams.

To have a deeper look in the general applicability of
WebTagger for social media texts, an additional corpus
WebTypes is used. It is composed of roughly 4,000 tokens,
where comments from different Web sites and a corpus
extract from the Dortmunder chat corpus BalaCK 1-b [20]
are manually annotated. Three different types of social media
texts are represented, YouTube comments, blog comments, and
chat messages. Further corpus statistics can be found in [15].

B. Cross validation

A 10-fold cross validation is performed to evaluate the
tagging accuracy of our approach, compared to state-of-the-art
taggers. Therefore, WebTrain is divided into ten equally sized
subsets which are created by randomly selected sentences.
WebTagger and three state-of-the art taggers are trained on a
combination of nine subsets and TIGER data in each validation
step. The remaining subset is used for testing. The selected
taggers are TreeTagger [4], TnT [5], and Stanford [1]. In
a previous study [15] we evaluated the performance of the
mentioned taggers for social media texts in more detail. Total
tagging accuracies and accuracy rates achieved for known
tokens and unknown tokens are determined. Mean accuracies
and their standard deviation are given in Table II. WebTagger
significantly exceeds the mean tagging accuracy compared
to all state-of-the-art taggers. During the ten test runs we

64Polibits (48) 2013 ISSN 1870-9044

Melanie Neunerdt, Michael Reyer, Rudolf Mathar

TABLE II
RESULTS FOR 10-FOLD CROSS VALIDATION TRAINED ON JOINT-DOMAIN DATA USING WebTrain.

WebTagger TreeTagger TnT Stanford

Total 94.09± 0.37 93.72± 0.49 93.63± 0.37 93.18± 0.32
Known 95.15± 0.37 95.83± 0.43 95.81± 0.51 95.61± 0.40

Unknown 72.75± 2.25 67.98± 3.14 70.58± 2.08 68.14± 1.97

Percentage unknowns 4.72± 0.40 7.58± 0.75 8.65± 0.62 8.81± 0.62

perform 30 single comparisons with WebTagger. WebTagger
performs in 28 of 30 cases better. Particularly, the accuracy
on unknown tokens can be improved by our approach. Note
that, the tagging accuracy for known tokens is slightly worse
compared to state-of-the art taggers. But at the same time
the number of unknown tokens is significantly reduced from
2.9 up to 4.1 percentage points compared to the state-of-the
art taggers. Moreover, the accuracy for unknown tokens is
increased. The main contribution for this is given by our
approach combining prefix and suffix lexical probabilities by
the arithmetic mean, which makes the method more robust for
unknown tokens. Overall, considering the noisy characteristics
of social media texts, a considerable enhancement is achieved
with WebTagger. Precision and recall rates for each tag class
are determined to investigate the tag/class-specific accuracies.
Applying WebTagger leads to a mean precision of 0.86 with
a standard deviation of 0.2. On average, a recall of 0.84 with
standard deviation 0.23 is achieved. Considering the equally
weighted combination of both measures, our approach results
in a mean f1-measure of 0.84.

The ten most frequently confused tag pairs for our approach
are further investigated. The results are depicted in Table III.

TABLE III
MOST FREQUENTLY CONFUSED TAG CLASSES.

Correct Predicted Frequency

NE NN 147
NN NE 102

VVFIN VVINF 90
KOM ADV 58

FM NE 58
NN ADJA 46

PDS ART 42
VVFIN VVPP 40
VVINF VVFIN 38
PRELS ART 38

Bold classes also occur in the top ten confused tag
classes, evaluated only for unknown tokens. Tagging errors
are represented by absolute values/frequencies and calculated
over all testing sets with approximately 36,000 tokens. The
top two confusion pairs noun (NN) and named entity (NE)
account for 12% of the errors. This is not a particular effect
for social media texts, since it also occurs for newspaper texts.
To distinguish proper nouns from named entities is done by
named entity recognition and can not be solved by general
POS taggers. Interchanging a finite verb (VVFIN) and a
non-finite verb (VVINF) is caused by a non-local dependency

particularly in German. This is also reported for state-of-the-art
taggers and illustrated in [4]. Noticeable is the occurrence
of tag confusion between foreign language (FM) and named
entity (NE).

Social media texts are often multilingual and contain text
parts written in different language, e.g., a German Web
comment contains English text segments (FM). The tokens of
such text segments are annotated as foreign language (FM).
Due to the missing prefix/suffix information of such tokens,
this leads to tagging errors. Frequent tag confusion between
noun (NN) and attributive adjective (ADJA) results from
missing noun capitalization, which causes a valid adjective,
from self created tokens or token transformations.

Furthermore, we investigate the influence of training data
selection and parameter estimation adaptions for lexical
probabilities. Results are depicted in Table IV.

TABLE IV
INFLUENCE OF TRAINING DATA AND ESTIMATION METHODS

Method Accuracy (%)

Training TIGER newspaper corpus 87.59± 1.21
TIGER + WebTrain corpus, i.e., (+) 93.38± 0.42

Estimation (+) + normalization (t(w)) 93.61± 0.44
(+) + normalization (t(w))

+ word classes (Wr), i.e., (?) 93.91± 0.39
(?) + auxiliary lexicon (L+) 94.09± 0.37

A significant improvement is achieved by adding text genre
specific training data, i.e., Web comments. We discuss this
effect in detail in Section IV-C. The introduction of text
normalization and regular expressions to build word classes
leads to a significant improvement of 0.57 percentage points.
Additional usage of an auxiliary lexicon, further increases
accuracy about 0.18 percentage points.

All depicted results use a combined prefix/suffix lexicon
to estimate lexical probabilities for (still) unknown tokens.
Previous studies have shown, that adding prefix information
for automatic tagging of newspaper texts only leads to little
improvement of 0.05 percentage points, see [4]. In our
approach running the tagger only with a suffix lexicon results
in 0.3 and only with a prefix lexicon in 0.7 percentage points
performance loss.

C. Influence of text genre-specific training data

To further investigate the influence of using text genre
specific data, i.e., Web comments for training, we train our
model based on different training corpora. First, we train our

65 Polibits (48) 2013ISSN 1870-9044

A POS Tagger for Social Media Texts Trained on Web Comments

2 3 4 5 6 7 7.05 7.1 7.15 7.20

86

88

90

92

94

96

98

Tokens

Ac
cu

ra
cy

 (%
)

Web comments test data
Newspaper test data

x105

Fig. 1. Influence of additional newspaper/Web comment training, tested on
Web comment and newspaper texts.

model exclusively on newspaper texts. We stepwise increase
the amount of training data from 100,000 to 700,000 tokens. In
each step we randomly choose sentences comprising 100,000
tokens. This is performed 100 times and data is added to the
data selected in the previous step. Hence, the model is trained
on 100 different samples in each step. Second, in twenty
steps 1,000 up to 20,000 Web comment tokens are combined
with a sample set of 700,000 newspaper training tokens.
Here, we choose the newspaper training sample (700,000
tokens) achieving mean tagging accuracy, when tested on
Web comments. Additional Web comment tokens are chosen
randomly, sentence wise from WebTrain. Again we select 100
sample sets, in the same way as for the newspaper training
and train our model on such data for each iteration step.
Testing is performed on the remaining data, a fixed test set
of Web comments with approximately 6,000 tokens. Mean
results over 100 different trainings per point are depicted
in the curve marked with 4 in Figure 1. The plot contains
different x-axis scalings for the left and right area next to the
black vertical line to better illustrate the results. Significant
slope increase can be observed in this point, which proves
the success by using text genre specific training data for
the task of POS tagging for Web comments. Using 20,000
Web comment tokens results in approximately 2.4 percentage
points performance improvement on average. Hence, little
effort of manual annotation leads to a significant performance
improvement. Increase of 600,000 newspaper training tokens
results in approximately 5.8 percentage points improvement
solely.

Furthermore, we show that including grammatically non-
standardized texts as training data does not negatively effect
the annotation of standardized text by means of the proposed
approach. Random sentences are chosen from the newspaper
TIGER corpus to create a test set of 90,000 newspaper tokens.

7.00 7.02 7.04 7.06 7.08 7.10 7.12 7.14 7.16 7.18 7.20

88

89

90

91

92

93

94

Ac
cu

ra
cy

 (%
)

Tokens

2−order markov model, i.e. a)
a)+normalization + word classes, i.e. b)
b)+auxiliary lexicon

x105

Fig. 2. Stepwise parameter estimation adaptions for increasing Web comment
training data.

We use WebTagger trained on the different training corpora to
tag the newspaper data. The curve marked with ◦ in Figure 1
illustrates the results. Results proof that adding 20,000 Web
comment tokens for training do not effect tagging accuracy
for standardized texts essentially.

Comparison of tagging accuracies for Web comments
and newspaper texts states that the tagging accuracy on
standardized text can not be achieved when applying our
approach to Web comments. However, the performance
difference can be reduced from approximately 10 percentage
points to 4 percentage points by increasing the amount of
training data from 100,000 tokens to 720,000 tokens in
total. Furthermore, matching the slope of both curves for
the left area, states that increasing the amount of newspaper
training data is more substantial for the application to Web
comments compared to the application to newspaper texts.
Tagging accuracy can be improved by 2 percentage points
for newspaper data and 5.8 percentage points tested on Web
comments by adding the same amount of newspaper training
data.

Training our model on 700,000 TIGER tokens leads to
similar results, when tested on newspaper data compared to
TreeTagger results reported in [10]. For 90,000 randomly
selected testing sentences chosen from the TIGER corpus,
WebTagger achieves 96.9% accuracy on average.

Finally, the interaction between the amount of training
data and the different adaption method for lexical probability
estimation is illustrated in Figure 2. For testing the same 6,000
test tokens like in Figure 1 are used. We stepwise adapt the
lexical parameter estimation method by our proposed methods,
similarly to the procedure performed in Table IV. Significant
impact of introducing text normalization and word classes
is observed over the whole training data range. Using an
auxiliary lexicon leads to a significant performance increase,

66Polibits (48) 2013 ISSN 1870-9044

Melanie Neunerdt, Michael Reyer, Rudolf Mathar

TABLE V
TAGGER EVALUATION FOR DIFFERENT TEXT TYPES TRAINED ON JOINT-DOMAIN DATA.

#Tokens WebTagger TreeTagger TnT Stanford

WebTrain test 3,628 94.09± 0.37 93.72± 0.49 93.63± 0.37 93.18± 0.32

Chat messages 1,728 91.75± 0.09 89.12± 0.18 87.96± 0.11 87.81± 0.16
YouTube comments 1,463 86.90± 0.19 84.03± 0.24 81.18± 0.19 81.23± 0.16

Blog comments 815 93.56± 0.29 91.35± 0.18 90.46± 0.12 90.29± 0.17

particularly for a small amount of training data. Comparing
the slopes of the curves marked with ∇ and ? illustrates
that the sufficient training data amount is much higher to
compensate the improvement achieved by normalization and
word classes methods. In total, all estimation adaptions can
be partially compensated by adding additional Web comment
training data at least for this test sample. This has to be studied
in more detail for different test samples. However, manual
annotation of complete texts for fully supervised training is a
very time consuming step. Creating an auxiliary lexicon with
our proposed method shows a better trade-off between time
for annotation and improvement in tagging accuracy.

D. Transfer to other social media text types

In this subsection, we study the application of the proposed
WebTagger to different social media text types, where the
tagger is not trained on the particular type. To illustrate the
improvements, Table V shows tagging accuracies and standard
deviations for WebTagger and the three selected state-of-the
art taggers. All taggers are trained on the joint-domain cross
validation data described before. We compare the results for
the particular Web comment test data to results achieved for
blog comments, chat messages and YouTube comments from
WebTypes corpus, introduced in Subsection IV-A.

Application of WebTagger leads to a consistent performance
increase between approximately 2 and 6 percentage points
for different social media text types. Best improvements
can be observed for YouTube comments, which are highly
characterized by a dialogue form and social media text
characteristics, such as emoticons, word shortenings or letter
iterations. Even though considerable improvement is achieved,
the tagging accuracy of 86.9% is the lowest compared to
all other types, due to the low text standardization. Overall,
WebTagger outperforms the state-of-the art taggers for all
social media text types.

Figure 3 shows the influence of additional Web comment
training data to the different social media text types.
The accuracy improvements over the different training data
amounts are depicted in the corresponding curves. For all
social media types the stepwise addition of WebTrain training
data leads to a consistent accuracy increase. For WebTypes
related text types, which show more social media text
characteristics, the slope of the curves is higher compared
to the particular training data type WebTrain (test, 6,000
tokens). Increasing the amount of Web comment training data
leads to a significant performance increase, particularly for

7.0 7.02 7.04 7.06 7.08 7.10 7.12 7.14 7.16 7.18 7.20
0

0.5

1

1.5

2

2.5

3

3.5

Tokens

Ac
cu

ra
cy

 c
ha

ng
e

(%
)

Blog comments
Chat messages
YouTube comments
Web comments

x105

Fig. 3. Influence of additional Web comment training for different social media
texts.

blog comments and YouTube comments. Results approve that
general social media text characteristics can be learned from
Web comments (Heise). In summary, the results from Table V
and Figure 3 show that the adapted parameter estimation
methods combined with a sufficient amount of Web comment
training data leads to adequate tagging accuracies for social
media texts in general. Results clearly demonstrate that the
proposed tagger can successfully be applied to other texts
belonging to the social media text genre.

Note that we exclude twitter messages from this scope, since
this subset can not be addressed suitably with the presently
developed method. Due to their special characteristic given
by hard distractions to 140 characters, the proposed method
needs to be further adapted.

E. Transfer to other languages

The basic model and parameter estimation enhancements
of the proposed WebTagger are language independent.
It is adapted to the social media text characteristics in
general, e.g., emoticons or character iterations. However,
considering all minor effects that depend on language specific
properties requires some additional effort, e.g., for adapting the
normalization function. Moreover, language specific training
would require an additional supervised social media text
corpus. For the corpus annotation all described annotation
rules can be used analogously. Evidently, POS tags need to
be mapped to the language specific tag set.

67 Polibits (48) 2013ISSN 1870-9044

A POS Tagger for Social Media Texts Trained on Web Comments

V. CONCLUSION

A new POS tagger, WebTagger, designed for the annotation
of social media texts has been presented. It yields a
minimum improvement of 2.2 percentage points for different
social media text types compared to state-of-the art taggers.
Furthermore, WebTagger performs the best with an average
accuracy of 94% evaluated in a cross validation on German
Web comments. Our approach basically differs from other
statistical Markov model taggers in estimation of lexical
probabilities for unknown tokens. Before word classes realized
by regular expressions and a prefix and suffix lexicon
is adequately combined, a word preprocessing for text
normalization is performed. Additionally, the usage of a
semi-supervised auxiliary lexicon is proposed. Altogether,
lexical probability distributions are estimated more accurately
for social media texts.

Furthermore, the influence of manually annotated text genre
specific training data, i.e., social media texts, is investigated.
Considerable improvement is achieved by using only a small
amount of 20,000 tokens as additional data for supervised
training. Using such training data enables for reliable transition
probability estimates by learning the different grammatical
structure of social media texts.

In our approach we exemplarily use German social media
texts. WebTaggers basic model and parameter estimation
enhancements are language independent. However, we
recommend a language specific training which requires an
additional supervised social media text corpus.

ACKNOWLEDGMENT

This work was partially supported by the Project House
HumTec at RWTH Aachen University, Germany. We would
like to thank Phillip Vaßen for his contribution.

REFERENCES

[1] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer, “Feature-rich
Part-of-Speech Tagging With a Cyclic Dependency Network,” in
Proceedings of Human Language Technology Conference, 2003, pp.
173–180.

[2] P. Gadde, L. V. Subramaniam, and T. A. Faruquie, “Adapting a WSJ
Trained Part-of-Speech Tagger to Noisy Text: Preliminary Results,” in
Proceedings of the 2011 Joint Workshop on Multilingual OCR and
Analytics for Noisy Unstructured Text Data, 2011, pp. 5:1–5:8.

[3] H. Schmid, “Probabilistic Part-of-Speech Tagging Using Decision
Trees,” in Proceedings of International Conference on New Methods
in Language Processing, 1994, pp. 44–49.

[4] ——, “Improvements in Part-of-Speech Tagging With an Application
to German,” in Proceedings of the ACL SIGDAT-Workshop, 1995, pp.
47–50.

[5] T. Brants, “TnT – A Statistical Part-of-Speech Tagger,” in Proceedings
of the 6th Applied Natural Language Processing Conference, 2000, pp.
224–231.

[6] A. Schiller, S. Teufel, C. Stöckert, and C. Thielen, “Guidelines für das
Tagging deutscher Textcorpora mit STTS,” 1999, university of Stuttgart.

[7] J. Giménez and L. Màrquez, “Svmtool: A General POS Tagger
Generator Based on Support Vector Machines,” in Proceedings of the
4th International Conference on Language Resources and Evaluation,
2004, pp. 43–46.

[8] H. Schmid, “Part-of-Speech Tagging With Neural Networks,” in
Proceedings of the 15th Conference on Computational Linguistics, 1994,
pp. 172–176.

[9] M. Volk and G. Schneider, “Comparing a statistical and a rule-based
tagger for German,” in Proceedings of the 4th Conference on Natural
Language Processing, 1998, pp. 125–137.

[10] E. Giesbrecht and S. Evert, “Is Part-of-Speech Tagging a Solved Task?
An Evaluation of POS Taggers for the German Web as Corpus,” in
Proceedings of the Fifth Web as Corpus Workshop, 2009, pp. 27–35.

[11] A. Mikheev, “Automatic Rule Induction for Unknown Word Guessing,”
Computational Linguistics, vol. 23, pp. 405–423, 1997.

[12] H. Schütze, “Distributional Part-of-Speech Tagging,” in Proceedings
of 7th Conference of the European Chapter of the Association for
Computational Linguistics, 1995, pp. 141–148.

[13] O. Owoputi, B. O’Connor, C. Dyer, K. Gimpel, and N. Schneider, “Part-
of-Speech Tagging for Twitter: Word Clusters and Other Advances,”
School of Computer Science, Carnegie Mellon University, Tech. Rep.,
2012.

[14] K. Gimpel, N. Schneider, B. O’Connor, D. Das, D. Mills, J. Eisenstein,
M. Heilman, D. Yogatama, J. Flanigan, and N. A. Smith, “Part-of-Speech
tagging for Twitter: annotation, features, and experiments,” in
Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics, 2011, pp. 42–47.

[15] M. Neunerdt, M. Reyer, and R. Mathar, “Part-of-Speech Tagging for
Social Media Texts,” in Proceedings of The International Conference
of the German Society for Computational Linguistics and Language
Technology, 2013.

[16] B. Trevisan, M. Neunerdt, and E.-M. Jakobs, “A Multi-level Annotation
Model for Fine-grained Opinion Detection in German Blog Comments,”
in Proceedings of KONVENS 2012, 2012, pp. 179–188.

[17] M. Beißwenger, M. Ermakova, A. Geyken, L. Lemnitzer, and A. Storrer,
“A TEI Schema for the Representation of Computer-mediated
Communication,” Journal of the Text Encoding Initiative, no. 3, pp.
1–31, 2012. [Online]. Available: http://jtei.revues.org/476

[18] J. R. Quinlan, “Induction of Decision Trees,” Machine Learning, pp.
81–106, 1986.

[19] S. Brants, S. Dipper, P. Eisenberg, S. Hansen-Schirra, E. König,
W. Lezius, C. Rohrer, G. Smith, and H. Uszkoreit, “TIGER: Linguistic
Interpretation of a German Corpus,” Research on Language &
Computation, pp. 597–620, 2004.

[20] M. Beißwenger, “Corpora zur computervermittelten (internetbasierten)
Kommunikation,” Zeitschrift für germanistische Linguistik, vol. 35, pp.
496–503, 2007.

68Polibits (48) 2013 ISSN 1870-9044

Melanie Neunerdt, Michael Reyer, Rudolf Mathar

Resumen—En este artículo presentamos el concepto de los n-

gramas sintácticos no-continuos. En nuestros trabajos previos

hemos introducido un concepto general de los n-gramas

sintácticos, es decir, los n-gramas que se construyen siguiendo las

rutas en un árbol sintáctico. Su gran ventaja consiste en que

permiten introducir información puramente lingüística

(sintáctica) en los métodos computacionales de aprendizaje

automático. Su desventaja está relacionada con la necesidad de

realizar el análisis sintáctico automático previo. También hemos

demostrado que la aplicación de los n-gramas sintácticos en la

tarea de atribución de autoría da mejores resultados que el uso de

los n-gramas tradicionales. Sin embargo, en dichos trabajos sólo

hemos considerado los n-gramas sintácticos continuos, es decir,

durante su construcción no se permiten bifurcaciones en las rutas

sintácticas. En este artículo, estamos proponiendo a quitar esta

limitación, y de esa manera considerar todos los sub-árboles de

longitud n de un árbol sintáctico como los n-gramas sintácticos no-

continuos. Cabe mencionar que los n-gramas sintácticos continuos

son un caso particular de los n-gramas sintácticos no-continuos.

El trabajo futuro debe mostrar qué tipo de n-gramas es más útil y

para qué tareas de PLN. Se propone la manera formal de escribir

un n-grama sintáctico no-continuo usando paréntesis y comas, por

ejemplo, “a b [c [d, e], f]”. También presentamos en este artículo

ejemplos de construcción de n-gramas sintácticos no-continuos

para los árboles sintácticos obtenidos usando FreeLing y el parser

de Stanford.

Palabras clave—Modelo de espacio vectorial, n-gramas, n-

gramas sintácticos continuos, n-gramas sintácticos no-continuos.

Non-continuous Syntactic N-grams

Abstract—In this paper, we present the concept of non-

continuous syntactic n-grams. In our previous works we

introduced the general concept of syntactic n-grams, i.e., n-grams

that are constructed by following paths in syntactic trees. Their

great advantage is that they allow introducing of the merely

linguistic (syntactic) information into machine learning methods.

Certain disadvantage is that previous parsing is required. We also

proved that their application in the authorship attribution task

gives better results than using traditional n-grams. Still, in those

works we considered only continuous syntactic n-grams, i.e., the

paths in syntactic trees are not allowed to have bifurcations. In

this paper, we propose to remove this limitation, so we consider all

sub-trees of length n of a syntactic tree as non-continuous

syntactic n-grams. Note that continuous syntactic n-grams are the

particular case of non-continuous syntactic n-grams. Further

research should show which n-grams are more useful and in which

NLP tasks. We also propose a formal manner of writing down

(representing) non-continuous syntactic n-grams using

parenthesis and commas, for example, “a b [c [d, e], f]”. In this

paper, we also present examples of construction of non-continuous

syntactic n-grams on the basis of the syntactic tree of the FreeLing

and the Stanford parser.

Index Terms—Vector space model, n-grams, continuous

syntactic n-grams, non-continuous syntactic n-grams.

I. INTRODUCCIÓN

N el análisis automático de lenguaje natural

(procesamiento de lenguaje natural, PLN) y en la

lingüística computacional [1] cada vez son más populares los

métodos relacionados con el aprendizaje automático

computacional (machine learning, en inglés). Aplicando estos

métodos se obtienen resultados cada vez mejores [2], [3].

La intención principal detrás de la aplicación de los métodos

de aprendizaje automático es tratar de modelar la formulación

de hipótesis por parte de los lingüistas y su posterior

verificación. En este caso se sustituye la intuición humana por

las grandes cantidades de datos textuales, posiblemente con

marcas adicionales hechas manualmente, y por métodos

sofisticados de aprendizaje, que se basan en las matemáticas y

en las estadísticas. De ninguna manera se pretende sustituir a

los lingüistas en el proceso de investigación, sino desarrollar

herramientas que puedan ser útiles para ellos. Por otro lado, la

aplicación de métodos de aprendizaje automático permite la

evaluación exacta de las hipótesis, la reproducción de los

resultados y hasta cierto punto convierte a la lingüística

computacional en una ciencia más exacta. En este sentido,

algunas partes de la lingüística computacional ya requieren

procedimientos empíricos, cuando la hipótesis formulada se

verifica utilizando los experimentos computacionales basados

en datos, y no sólo en la intuición de hablantes nativos o del

propio experimentador.

Los métodos más utilizados en la lingüística computacional

son en su mayoría métodos supervisados, es decir, se utilizan

datos marcados manualmente para realizar entrenamiento. Otra

posibilidad está relacionada con los métodos no supervisados,

cuando el propio sistema debe aprender directamente de los

datos. Claro está que es mucho más difícil utilizar los métodos

no supervisados, porque en este caso en ningún lado se

encuentra una intervención humana; normalmente para poder

aplicar estos métodos se requiere una gran cantidad de datos.

Por lo mencionado anteriormente, en la lingüística

computacional ya son aplicables los conceptos de precisión y

especificidad (precision y recall, en inglés), que miden la

viabilidad de una hipótesis de manera formal. Igual que el

concepto de línea base (baseline), que corresponde al método

Grigori Sidorov

N-gramas sintácticos no-continuos

E

Manuscrito recibido 12 de junio de 2013. Manuscrito aceptado para su

publicación 23 de septiembre de 2013.
Grigori Sidorov trabaja en el Centro de Investigación en Computación

(CIC), Instituto Politécnico Nacional (IPN), Av. Juan de Dios Bátiz, s/n, esq.

Othón de Mendizábal, Zacatenco, 07738, México DF, México (e-mail:
www.cic.ipn.mx/~sidorov).

69 Polibits (48) 2013ISSN 1870-9044; pp. 69–78

comúnmente aceptado del estado del arte que resuelve el

mismo problema, y que debe ser superado por la hipótesis

propuesta. Normalmente la línea base es un método no muy

sofisticado. Dado que estamos hablando de datos marcados por

seres humanos de manera manual y que se usan para la

verificación del método, se utiliza el concepto de estándar de

oro (gold standard). Como es marcado de manera manual, se

supone que no tiene errores (de aquí viene la idea que es de

“oro”), y si el sistema lo puede alcanzar, entonces el sistema

funciona realmente muy bien. Una cuestión interesante está

relacionada con la concordancia entre los juicios humanos, es

decir, si los propios seres humanos marcan de manera diferente

algún fenómeno lingüístico, entonces no podemos esperar que

la máquina resuelva correctamente este mismo fenómeno. Aquí

viene el concepto de la línea tope (top line, en inglés). Por lo

mismo, es recomendable usar varios evaluadores, y no sólo

uno, para tener juicios mejor fundamentados y menos sesgados.

Para realizar los experimentos se utiliza comúnmente la

técnica llamada validación cruzada de k volúmenes (k-fold

cross validation), donde k tiene un valor numérico,

normalmente igual a 10. La técnica consiste en dividir todos los

datos en 10 (o k) volúmenes. Primero se utiliza el volumen 1

para la evaluación de los resultados del sistema, y los

volúmenes 2 a 10 para el entrenamiento, después se elige el

volumen 2 para la evaluación, y los otros nueve volúmenes para

el entrenamiento, y así sucesivamente. De esta manera el

sistema es evaluado 10 veces sobre datos diferentes y se entrena

10 veces sobre datos algo diferentes, finalmente se toma el

promedio de las 10 evaluaciones. Nótese que es muy

importante no realizar la evaluación sobre los mismos datos,

sobre los cuales se hizo el entrenamiento: por eso es la división

en k volúmenes.

Para realizar todos los procedimientos descritos, tenemos

que representar el problema de manera formal. El modo más

utilizado de representación es el modelo de espacio vectorial

[2], [4]. Se representa el problema como un problema de

clasificación automática en un espacio, que es precisamente el

espacio vectorial. Los objetos se representan como conjuntos

de valores de características, es decir, a cada objeto le

corresponde un vector de dichos valores (de aquí el término

“espacio vectorial”). Eso significa que cada objeto es un punto

en el espacio multidimensional de características. Es muy fácil

imaginar este modelo para el caso de dos características (dos

dimensiones). Para un mayor número de dimensiones

simplemente hay que suponer que es similar. Después de

definir el espacio, se define una métrica en este espacio.

Normalmente es la métrica de similitud de objetos, definida por

la similitud de coseno [2], [4]. La idea de dicha similitud es:

más se parecen los dos objetos entre sí, menor es el ángulo entre

ellos en el espacio definido, y por lo tanto mayor es el coseno

de este ángulo.

Ahora bien, la siguiente pregunta es: cómo elegir las

características para definir el espacio vectorial. En este

momento empiezan a prevalecer las consideraciones

lingüísticas: es precisamente la parte lingüística que determina

las características que podemos elegir. Por ejemplo, la idea más

sencilla utilizada en recuperación de información es utilizar

todas las palabras en varios documentos como sus

características, y después comparar esos documentos: cuantas

más palabras “iguales” tienen dos documentos, más se parecen

entre sí estos documentos. Así se construye el espacio vectorial

para la tarea de recuperación de información.

Obviamente en este caso, las ideas de qué tipo de

información lingüística se puede utilizar se restringen por el

requisito formal de utilizar el modelo de espacio vectorial, es

decir, la obligación de representar los objetos como los

conjuntos de valores de características.

La siguiente posibilidad más utilizada en la práctica, y que

ya tiene cierto fundamento lingüístico, es la idea de utilizar n-

gramas como características en el modelo de espacio vectorial.

El concepto de n-grama es realmente muy sencillo: son las

secuencias de palabras (u otros tipos de elementos) según

aparecen en los textos. Entonces, el fundamento es que se tome

en cuenta la información sintagmática de las palabras.

Sin embargo, sería muy provechoso utilizar conocimiento

aún más “lingüístico”, es decir, que involucre más información

propiamente lingüística, por ejemplo, como en [5], [6], [7].

Como un camino en esta dirección, en nuestros trabajos

anteriores [4], [8], [9], [10] hemos propuesto un nuevo

concepto de n-gramas, que contiene aún una mayor

información de naturaleza lingüística que los n-gramas

tradicionales: n-gramas sintácticos. La idea de los n-gramas

sintácticos consiste en construirlos siguiendo la ruta en el árbol

sintáctico. De esa manera los n-gramas sintácticos siguen

siendo n-gramas, pero permiten introducir información

sintáctica [11] en los métodos de aprendizaje automático.

Sin embargo, en todos esos trabajos hemos propuesto

obtener un n-grama sintáctico como un fragmento de una ruta

continua, no se permiten bifurcaciones en la ruta más

adelante presentaremos ejemplos de eso. En este artículo

vamos a presentar el concepto de n-gramas sintácticos no-

continuos, es decir, siguiendo la ruta en el árbol sintáctico, se

permite entrar en las bifurcaciones y regresar.

La estructura del resto del artículo es la siguiente. Primero

discutimos el concepto de los n-gramas sintácticos continuos,

tal como se presentó en nuestros trabajos anteriores. Después

presentamos el concepto de los n-gramas sintácticos no-

continuos. En las siguientes secciones vamos a considerar los

ejemplos de extracción de los n-gramas sintácticos continuos y

no-continuos para el español y el inglés. Finalmente,

presentaremos las conclusiones.

II. N-GRAMAS SINTÁCTICOS CONTINUOS

En nuestros trabajos anteriores [4], [8], [9], [10] hemos

introducido el nuevo concepto de los n-gramas sintácticos, es

decir, n-gramas obtenidos siguiendo las rutas en un árbol

70Polibits (48) 2013 ISSN 1870-9044

Grigori Sidorov

sintáctico. Un árbol sintáctico de una frase muestra1 se presenta

en las fig. 1 y 2, utilizando el formalismo de dependencias y

constituyentes. Cabe mencionar que la idea de utilizar

información estructural de relaciones de palabras en tareas

específicas se ha presentado anteriormente [12], [13], [14],

[15], [16], sin embargo, en ninguno de estos trabajos se ha

generalizado, ni se ha relacionado con la idea de los n-gramas.

El trabajo [17] ha propuesto una idea similar en el campo de

análisis semántico, donde la utilidad de la información

sintagmática se demuestra en tareas muy específicas de: 1)

“semantic priming”, es decir, los experimentos

psicolingüísticos sobre la similitud de palabras, 2) detección de

sinónimos en las pruebas TOEFL, y 3) ordenamiento de

sentidos de palabras según su importancia.

En nuestra opinión, este trabajo no tuvo mucha resonancia

en otras tareas de PLN precisamente por no relacionar la

información sintáctica con los n-gramas, que es la herramienta

principal en la gran mayoría de tareas, ni por mostrar su utilidad

1Frase de una de las obras de A. Conan-Doyle.

en otras tareas que no son tan específicamente orientadas a la

semántica.

Anteriormente, hemos propuesto varios tipos de n-gramas

sintácticos con base en qué elementos los constituyen:

 Elementos léxicos (palabras, lemas, o raíces),

 Etiquetas de las categorías gramaticales (POS tags),

 Nombres de las relaciones sintácticas (SR tags),

 Caracteres,

 N-gramas sintácticos mixtos (combinaciones de los

tipos anteriores).

Cabe mencionar que para la construcción de los n-gramas

sintácticos de caracteres es necesario primero construir los n-

gramas sintácticos de palabras y después basándose en éstos

construir los n-gramas de caracteres. Es cuestión de trabajo

futuro verificar si los n-gramas sintácticos de caracteres son

útiles para algunas tareas de PLN. Resulta que la aplicación de

Tomé el pingajo en mis manos y le di un par de vueltas de_mala_gana

Fig. 1. Árbol sintáctico (analizado por FreeLing) representado con dependencias

Tomé el pingajo en mis manos y le di un par de vueltas de_mala_gana

Fig. 2. Árbol sintáctico (analizado por FreeLing) representado con constituyentes

71 Polibits (48) 2013ISSN 1870-9044

N-gramas sintácticos no-continuos

los n-gramas tradicionales de caracteres presenta buenos

resultados en algunas tareas, por ejemplo, en la tarea de

detección de autoría [17]. Sin embargo, desde nuestro punto de

vista, la aplicación de los n-gramas de caracteres es hasta cierto

punto anti-intuitivo, y falta analizar las razones de su

funcionamiento aceptable.

Respecto a los n-gramas mixtos, se deberá analizar a futuro

qué combinaciones de los elementos: palabras, POS-tags, SR-

tags, y en qué posiciones: al inicio, en medio de un n-grama, o

al final, está dando mejores resultados.

En [17] se menciona la idea de ponderar las relaciones entre

los elementos de un n-grama sintáctico. Esa idea no nos parece

aplicable directamente en el contexto de modelos de espacio

vectorial, donde los n-gramas son las características

(dimensiones del espacio). Sin embargo, esa idea puede ser útil

en el momento de calcular los pesos de n-gramas sintácticos,

aparte de los valores tradicionales de tf-idf.

En nuestros trabajos anteriores [18] hemos demostrado que

los n-gramas sintácticos pueden dar mejores resultados que los

n-gramas tradicionales. Lo analizamos para el problema de

detección de autoría. Sin embargo, los n-gramas sintácticos

pueden ser utilizados en cualquier tipo de problemas donde se

utilizan los n-gramas tradicionales, porque igual permiten la

construcción del modelo de espacio vectorial. La desventaja de

los n-gramas sintácticos consiste en el hecho que se requiere el

análisis sintáctico automático previo, lo que toma cierto tiempo

de procesamiento, aunque no es una limitación muy seria.

También no para todos los idiomas existen analizadores

sintácticos automáticos, pero sí para los idiomas con mayor

presencia en el mundo, como el español o el inglés.

Independientemente del tipo de elementos que constituyen

los n-gramas sintácticos, todos los n-gramas sintácticos

considerados en nuestros trabajos anteriores, son continuos.

Eso quiere decir que la ruta sintáctica que estamos siguiendo

nunca tiene bifurcaciones, véase la comparación de la fig. 3 y

de las fig. 4 y 5. La ruta marcada con flechas en negrita en la

fig. 3 corresponde a un 5-grama sintáctico continuo. En este

caso es: “y di par de vueltas”.

A continuación presentaremos otro tipo de n-gramas

sintácticos, donde se permiten las bifurcaciones.

III. N-GRAMAS SINTÁCTICOS NO-CONTINUOS

En esta sección vamos a presentar el complemento (o se

puede considerar como una generalización) del concepto de n-

gramas sintácticos continuos: n-gramas sintácticos no-

continuos.

Como se puede observar en la sección anterior, la intuición

detrás del concepto de n-gramas sintácticos continuos está

relacionada principalmente con el hecho de que una secuencia

 y le di un par de vueltas de_mala_gana

Fig. 4. N-gramas sintácticos no-continuos en el fragmento del árbol
sintáctico: ejemplo de un 5-grama

 y le di un par de vueltas de_mala_gana

Fig. 5. N-gramas sintácticos no-continuos en el fragmento del árbol

sintáctico: otro ejemplo de un 5-grama

 y le di un par de vueltas de_mala_gana

Fig. 3. N-gramas sintácticos continuos en el fragmento del árbol sintáctico:
ejemplo de un 5-grama

72Polibits (48) 2013 ISSN 1870-9044

Grigori Sidorov

de palabras relacionadas puede ser considerada como tal, en su

totalidad.

Sin embargo, existen otros conceptos lingüísticos

interesantes, que no caben en el modelo de una secuencia

unidimensional, por ejemplo, las valencias verbales (o patrones

de rección) [19], [20]. Por ejemplo, el verbo comprar tiene los

actantes: quién, qué, de quién, por cuanto dinero. Sería muy

interesante tenerlos presentes al mismo tiempo en un n-grama.

Sin embargo, tanto para el caso de n-gramas tradicionales,

como de n-gramas sintácticos, todos esos componentes

hubieran sido separados en n-gramas diferentes. Entonces, la

intuición detrás del concepto de n-gramas sintácticos no-

continuos es precisamente tratar de unir las palabras

relacionadas semánticamente, aunque éstas no tengan una ruta

continua, pero sí tengan alguna ruta que las conecte.

Es muy fácil dar una definición formal de n-gramas

sintácticos no-continuos: son todos los sub-árboles de longitud

n de un árbol sintáctico. En este sentido, digamos, los n-gramas

sintácticos continuos se definen como todos los sub-árboles sin

bifurcaciones de longitud n de un árbol sintáctico. Eso quiere

decir que los n-gramas sintácticos continuos son un caso

particular de n-gramas sintácticos no-continuos, al aplicar la

definición propuesta. La longitud de un árbol es el número de

arcos en este árbol, lo que corresponde al valor de n (en caso

de los n-gramas).

Otro término que podemos proponer para denotar los n-

gramas sintácticos no-continuos, es t-n-gramas (tree n-grams,

en inglés) es decir, n-gramas de árboles2.

Es cuestión de un trabajo futuro determinar qué tipo de n-

gramas: continuos o no-continuos, son mejores para varios

tipos de tareas de la lingüística computacional. Es posible que

para algunos tipos de tareas son mejores unos, y para otros tipos

de tareas, otros.

Cabe mencionar que el número de n-gramas sintácticos no-

continuos es mayor que el de los n-gramas sintácticos

continuos, dado que los últimos son un caso particular de los

primeros.

El algoritmo de construcción (u obtención) de los n-gramas

sintácticos no-continuos es relativamente sencillo. Para el nodo

raíz hay que considerar todas las posibles combinaciones de sus

hijos con el tamaño no mayor que n, y repetir este

procedimiento de manera recursiva para cada nodo hijo. Y así

2 La sugerencia de A. Gelbukh es usar el término “t-gramas, árbol-gramas”

(tree grams, t-grams, en inglés), sin embargo nos parece un poco mejor el
término “n-gramas de árboles” (tree n-grams, t-n-grams, en inglés), dado que

de manera sucesiva hay que pasar por todos los nodos del árbol

sintáctico.

Puede surgir la pregunta ¿y cómo representar a los n-gramas

sintácticos no-continuos sin utilizar su representación gráfica?

Cabe recordar que los n-gramas sintácticos continuos son

simplemente secuencias de palabras, pero el caso de los n-

gramas sintácticos no-continuos es diferente. Estamos

proponiendo utilizar los siguientes convenios. Nótese que son

convenios, por lo que pueden ser modificados en un futuro.

Dentro de cada n-grama sintáctico no-continuo pueden existir

unas partes continuas y una o varias bifurcaciones. Vamos a

separar los elementos continuos de n-gramas con espacios en

blanco nada más, y en la parte de la bifurcación vamos a

poner comas, además vamos a usar paréntesis para la parte de

bifurcaciones, dado que posteriormente puede aparecer la

ambigüedad de estructuras.

Dos ejemplos de los 5-gramas sintácticos no-continuos están

representados en la fig. 4 y la fig. 5: “y di par [un, de]”, “y di

[le, par, de_mala_gana]”. Nótese que los paréntesis y las

comas ahora son partes de los n-gramas, pero eso de ninguna

manera impide la identificación de los n-gramas sintácticos que

son iguales.

La ambigüedad puede aparecer por ejemplo, en caso de que

un n-grama tenga dos bifurcaciones y varios fragmentos

continuos. Por ejemplo, el n-grama “a [b, c [d, e, f]]” y “a [b,

c [d, e], f]” tiene el nodo f o bien como el tercer nodo debajo

del nodo c, o bien como el tercer nodo debajo del nodo a, véase

la fig. 6.

Ahora bien, tenemos dos posibilidades de manejar las partes

con bifurcaciones: 1) tal como aparecen en el texto, que es la

manera más natural, o 2) ordenarlos de alguna manera, por

ejemplo, alfabéticamente. Esta última opción nos permite

tomar en cuenta los cambios relacionados con el orden de

palabras. Sin embargo, se necesitan más investigaciones para

determinar cuál de las dos opciones es mejor y para qué tarea

de PLN.

Otra posibilidad que nos gustaría mencionar es marcar

directamente dentro de los n-gramas sintácticos no-continuos

su profundidad. La intuición detrás de esta idea es que para

algunos tipos de n-gramas sintácticos no-continuos puede ser

importante su posición en el árbol sintáctico de la oración. En

este caso la notación sería: “y1 di2 par3 [un4, de4]”, “y1 di2 [le3,

par3, de_mala_gana3]”. Técnicamente, sería suficiente marcar

el nivel de la primera palabra únicamente; podemos marcar los

demás niveles también, pero no es estrictamente necesario.

A continuación vamos a considerar dos ejemplos de

construcción de n-gramas sintácticos no-continuos, uno para el

español y otro para el inglés, y los comparamos con los n-

gramas sintácticos continuos.

así se establece la relación del término propuesto con el concepto muy

tradicional de los n-gramas. Del otro lado, una consideración a favor del
término “t-grama” es su forma más simple.

 a b c d e f a b c d e f

Fig. 6. Ejemplo de la ambigüedad en bifurcaciones

73 Polibits (48) 2013ISSN 1870-9044

N-gramas sintácticos no-continuos

IV. EJEMPLO DE CONSTRUCCIÓN DE N-GRAMAS SINTÁCTICOS

NO-CONTINUOS PARA EL ESPAÑOL

En esta sección vamos a presentar ejemplos de la

construcción de n-gramas sintácticos continuos y no-continuos

para el español. Tomemos la frase muestra:

Tomé el pingajo en mis manos y le di un par de vueltas de

mala gana.

Para construir automáticamente los n-gramas sintácticos, es

necesario aplicar antes un programa de análisis sintáctico

automático, llamado en inglés parser. Para el español hemos

utilizado el programa FreeLing [22], [23], que está disponible

de manera gratuita.

El analizador sintáctico puede construir el árbol utilizando

dos formatos: constituyentes y dependencias. El árbol de

dependencias se presenta en la fig. 1, y el de constituyentes en

la fig. 2. Ambos formatos tienen esencialmente la misma

información de relaciones de palabras. Para los fines de

construcción de los n-gramas sintácticos nos parece mejor

utilizar las dependencias, porque la representación es más

transparente. Sin embargo, de igual manera se puede utilizar el

árbol de constituyentes.

Cabe mencionar que el analizador sintáctico primero realiza

el análisis morfológico y la lematización. Como se puede

observar, a cada palabra de la oración le corresponde su lema y

la información gramatical, por ejemplo, “Tomé tomar

VMIS1S0”. Primero viene la palabra, después el lema, y al final

la información gramatical.

La información gramatical utiliza el esquema de

codificación EAGLES, que es el estándar de facto para el

análisis morfológico automático del español. Por ejemplo, en

la etiqueta VMIS1S0, la primera letra “V” corresponde al

“verbo” (“N” hubiera sido un sustantivo, “A” un adjetivo, etc.),

la “I” es el indicativo, la “S” significa el pasado, “1” es la

primera persona, la otra letra “S” significa “singular”. Como se

puede observar, en cada posición se codifica un tipo específico

de la información gramatical, y cada etiqueta tiene como

máximo siete posiciones, de las cuales algunos pueden no

usarse en algunos casos, por ejemplo, en caso de los

sustantivos.

Primero presentamos los resultados de análisis automático

de la oración utilizando el formalismo de constituyentes

(fig. 2).

+coor-vb_[

 grup-verb_[

 +verb_[

 +(Tomé tomar VMIS1S0 -)

]

 sn_[

 espec-ms_[

 +j-ms_[

 +(el el DA0MS0 -)

]

]

 +grup-nom-ms_[

 +n-ms_[

 +(pingajo pingajo NCMS000 -)

]

]

]

 grup-sp_[

 +prep_[

 +(en en SPS00 -)

]

 sn_[

 espec-fp_[

 +pos-fp_[

 +(mis mi DP1CPS -)

]

]

 +grup-nom-fp_[

 +n-fp_[

 +(manos mano NCFP000 -)

]

]

]

]

]

 +(y y CC -)

 grup-verb_[

 patons_[

 +paton-s_[

 +(le le PP3CSD00 -)

]

]

 +grup-verb_[

 +verb_[

 +(di dar VMIS1S0 -)

]

]

 sn_[

 espec-ms_[

 +indef-ms_[

 +(un uno DI0MS0 -)

]

]

 +grup-nom-ms_[

 +n-ms_[

 +(par par NCMS000 -)

]

]

 sp-de_[

 +(de de SPS00 -)

 sn_[

 +grup-nom-fp_[

 +n-fp_[

 +(vueltas vuelta NCFP000 -)

]

]

]

]

]

 sadv_[

 +(de_mala_gana de_mala_gana RG -)

]

74Polibits (48) 2013 ISSN 1870-9044

Grigori Sidorov

]

 F-term_[

 +(. . Fp -)

]

]

Información muy similar se presenta utilizando el

formalismo de dependencias en la fig. 1.

coor-vb/top/(y y CC -) [

 grup-verb/co-v/(Tomé tomar VMIS1S0 -) [

 sn/dobj/(pingajo pingajo NCMS000 -) [

 espec-ms/espec/(el el DA0MS0 -)

]

 grup-sp/sp-obj/(en en SPS00 -) [

 sn/obj-prep/(manos mano NCFP000 -) [

 espec-fp/espec/(mis mi DP1CPS -)

]

]

]

 grup-verb/co-v/(di dar VMIS1S0 -) [

 patons/iobj/(le le PP3CSD00 -)

 sn/dobj/(par par NCMS000 -) [

 espec-ms/espec/(un uno DI0MS0 -)

 sp-de/sp-mod/(de de SPS00 -) [

 sn/obj-prep/(vueltas vuelta NCFP000 -)

]

]

 sadv/cc/(de_mala_gana de_mala_gana RG -)

]

 F-term/modnomatch/(. . Fp -)

]

Como ya mencionamos es más sencillo utilizar las

dependencias, porque ellas prácticamente ya contienen los n-

gramas sintácticos.

Se puede observar que las tres palabras “de_mala_gana”

realmente son un solo adverbio.

Ahora bien, vamos a presentar los ejemplos de los n-gramas

sintácticos extraídos. Primero presentamos los n-gramas

sintácticos continuos.

Los bi-gramas sintácticos (en bi-gramas no hay diferencia

entre bi-gramas continuos y no-continuos) son:

y tomé, tomé pingajo, pingajo el, tomé en, en manos, manos

mis, y di, di le, di par, par un, par de, de vueltas, di

de_mala_gana.

Los tri-gramas continuos son:

y tomé pingajo, y tomé en, tomé pingajo el, tomé en manos,

en manos mis, y di le, y di par, y di de_mala_gana, di par un,

di par de, par de vueltas.

Los 4-gramas continuos son:

y tomé pingajo el, y tomé en manos, tomé en manos mis, y di

par un, y di par de, di par de vueltas.

No vamos a repetir los mismos elementos elementos

continuos, aunque ellos también formen parte de los n-

gramas sintácticos no-continuos. Nótese que en este caso

tenemos que usar la notación propuesta para los n-gramas no-

continuos para poder distinguirlos de otras configuraciones

posibles. La notación forma parte de los n-gramas, no es algo

adicional, es el propio n-grama. En los n-gramas sintácticos

continuos las comas no son parte de n-grama, se pueden omitir

poniendo un n-grama por línea. Entonces, como la coma ya es

una parte de la notación, para ser más claros, ahora sí vamos a

presentar un n-grama por línea. Entonces, los tri-gramas no-

continuos nuevos en comparación con los n-gramas no-

continuos son:

tomé [pingajo en]

di [le par]

di [le de_mala_gana]

di [par de_mala_gana]

Fig. 7. El árbol sintáctico del ejemplo para el inglés

75 Polibits (48) 2013ISSN 1870-9044

N-gramas sintácticos no-continuos

par [un de]

Los 4-gramas no-continuos nuevos son:

tomé [pingajo el, en]

tomé [pingajo, en manos]

di [le, par un]

di [le, par de]

di [le, par, de_mala_gana]

di [par un, de_mala_gana]

di [par de, de_mala_gana]

par [un, de vueltas]

V. EJEMPLO DE CONSTRUCCIÓN DE N-GRAMAS SINTÁCTICOS

NO-CONTINUOS PARA EL INGLÉS

En esta sección vamos a analizar la construcción de n-

gramas sintácticos para el inglés. Para simplificar la

comparación con el español, tomaremos la traducción de la

misma frase que en la sección anterior, la fig. 7, en este caso

la figura se generó de manera automática.

I took the scrap in my hands and turned it a couple of times

unwillingly.

Si vamos utilizar el mismo analizador sintáctico, es decir,

FreeLing, los resultados van a ser muy similares. Vamos a

probar con otro analizador sintáctico para el inglés que también

es bien conocido analizador sintáctico de Stanford (Stanford

parser) [24]. El árbol de constituyentes es como sigue:

(ROOT

 (S

 (NP (PRP I))

 (VP

 (VP (VBD took)

 (NP (DT the) (NN scrap))

 (PP (IN in)

 (NP (PRP$ my) (NNS hands))))

 (CC and)

 (VP (VBD turned)

 (S

 (NP (PRP it))

 (NP

 (NP (DT a) (NN couple))

 (PP (IN of)

 (NP (NNS times) (NN unwillingly)))))))

 (. .)))

En este parser, para el árbol de dependencias se usa una

representación muy simple, pero expresiva: nombre de la

relación, dos palabras (o sus POS tags, o lemas) junto con sus

números en la oración. Primero se menciona la palabra

principal y después la dependiente, es decir, el orden de las

palabras es importante. Esta información permite construir el

árbol sintáctico de manera única.

nsubj(took-2, I-1)

root(ROOT-0, took-2)

det(scrap-4, the-3)

dobj(took-2, scrap-4)

prep(took-2, in-5)

poss(hands-7, my-6)

pobj(in-5, hands-7)

cc(took-2, and-8)

conj(took-2, turned-9)

nsubj(couple-12, it-10)

det(couple-12, a-11)

xcomp(turned-9, couple-12)

prep(couple-12, of-13)

nn(unwillingly-15, times-14)

pobj(of-13, unwillingly-15)

Cabe mencionar que hemos desarrollado un programa en el

lenguaje de programación Python que convierte el formato de

dependencias de FreeLing al formato de dependencias de

Stanford parser. Un problema relacionado con esa conversión

consiste en que el formato de FreeLing no contiene los números

de palabras en la oración, por lo que no se puede reconstruir el

árbol de entrada en todos los casos, pero eso no afecta la

construcción de los n-gramas sintácticos: se asigna un número

consecutivo para identificar las palabras.

Se puede observar que aunque la frase es muy parecida, el

otro parser aplicó otras reglas, específicamente, manejó de

manera diferente la conjunción y cometió varios errores: por

ejemplo, con unwillingly, relacionándolo con of y no con

turned; con it, relacionándolo con couple y no con turned. Sin

embargo, eso no afecta de manera conceptual nuestra

discusión, ya que nuestra tarea no es mejorar algún parser.

Ahora procedamos a la construcción de los n-gramas

sintácticos continuos y no-continuos.

Los bi-gramas sintácticos (recordemos que no hay diferencia

entre los bi-gramas sintácticos continuos y no-continuos) son:

took I, took scrap, scrap the, took in, in hands, hands my,

took and, took turned, turned couple, couple it, couple a, couple

of, of unwillingly, unwillingly times.

Los tri-gramas sintácticos continuos son:

took scrap the, took in hands, in hands my, took turned

couple, turned couple it, turned couple a, turned couple of,

couple of unwillingly, of unwillingly times.

Los 4-gramas sintácticos continuos son:

took in hands my, took turned couple it, took turned couple

a, took turned couple of, turned couple of unwillingly, couple

of unwillingly times.

Como en el ejemplo anterior no vamos a repetir los mismos

elementos, aunque los n-gramas continuos forman parte de los

n-gramas sintácticos no-continuos.

76Polibits (48) 2013 ISSN 1870-9044

Grigori Sidorov

Los tri-gramas no-continuos nuevos son (puede ser que

algunos de ellos son errores del parser, eso no afecta la idea

propuesta dado que son errores de otro tipo, que se puede

corregir mejorando el propio parser):

took [I, scrap]

took [I, in]

took [I, and]

took [I, turned]

took [scrap, in]

took [scrap, and]

took [scrap, turned]

took [in, and]

took [in, turned]

took [and, turned]

couple [it, a]

couple [it, of]

couple [a, of]

Los 4-gramas no-continuos nuevos son:

took [I, scrap the]

took [in, scrap the]

took [and, scrap the]

took [turned, scrap the]

took [I, in hands]

took [scrap, in hands]

took [and, in hands]

took [turned, in hands]

took [I, scrap, in]

took [I, scrap, and]

took [I, scrap, turned]

took [scrap, in, and]

took [scrap, in, turned]

took [in, and, turned]

couple[it, a, of]

couple[it, of unwillingly]

couple[a, of unwillingly]

Nótese que en este caso hemos tomado los elementos de los

n-gramas sintácticos no-continuos en su orden de aparición en

el texto. Como mencionamos, otra opción es ordenarlos de

alguna manera, por ejemplo, alfabéticamente.

VI. CONCLUSIONES

En este artículo hemos discutido cómo se realiza la

investigación en la etapa moderna de la lingüística

computacional, sobre todo relacionada con el uso de los

métodos de aprendizaje automático [25], y hemos presentado

una idea novedosa de n-gramas sintácticos no-continuos como

posibles características en un modelo de espacio vectorial. Lo

hemos comparado con nuestra idea presentada anteriormente

de n-gramas sintácticos continuos.

Hemos considerado dos ejemplos para el español e inglés,

brevemente hemos presentado el algoritmo de construcción de

los n-gramas sintácticos no-continuos y hemos propuesto la

notación formal de su representación. La notación las comas

y los paréntesis es importante porque sin ella no hay manera

de mantener la estructura en principio multidimensional

de los n-gramas sintácticos no-continuos.

Se necesitan múltiples estudios experimentales para

determinar qué parámetros de construcción de los n-gramas

sintácticos no-continuos son mejores y para qué tipo de tareas

existentes dentro de la lingüística computacional.

AGRADECIMIENTOS

Trabajo realizado con el apoyo de gobierno de la Ciudad de

México (proyecto ICYT-DF PICCO10-120), el apoyo parcial

del gobierno de México (CONACYT, SNI) e Instituto

Politécnico Nacional, México (proyectos SIP 20120418,

20131441, 20131702; COFAA), proyecto FP7-PEOPLE-2010-

IRSES: Web Information Quality - Evaluation Initiative (WIQ-

EI) European Commission project 269180. Agradezco a A.

Gelbukh por su ayuda y sugerencias fructíferas.

REFERENCIAS

[1] I.A. Bolshakov, A. Gelbukh. Computational linguistics: models,

resources, applications. 187 pp, 2004.

[2] C. Manning, H. Schütze, “Foundations of Statistical Natural Language

Processing,” MIT Press, Cambridge, MA, 1999.

[3] A. Gelbukh, G. Sidorov, “Procesamiento automático del español con

enfoque en recursos léxicos grandes,” IPN, 307 p., 2010.

[4] G. Sidorov, “N-gramas sintácticos y su uso en la lingüística

computacional,” Vectores de investigación, 6(6), 15 p., 2013.

[5] J.A. Reyes, A. Montes, J.G. González, D.E. Pinto, “Clasificación de

roles semánticos usando características sintácticas, semánticas y

contextuales,” Computación y sistemas, 17(2), pp. 263–272, 2013.

[6] A. Gelbukh. “Using a semantic network for lexical and syntactical

disambiguation,” Proc. CIC-97, Simposium Internacional de

Computación, Mexico, pp. 352–366, 1997.

[7] Y. Ledeneva, A. Gelbukh, R.A. García-Hernández. “Terms Derived

from Frequent Sequences for Extractive Text Summarization,” Proc.

CICLing 2008, Lecture Notes in Computer Science, N 4919, pp. 593–

604, 2008.

[8] G. Sidorov, F. Velasquez, E. Stamatatos, A. Gelbukh, L. Chanona-

Hernández, “Syntactic Dependency-based N-grams as Classification

Features,” LNAI, 7630, pp. 1–11, 2012.

[9] G. Sidorov, F. Velasquez, E. Stamatatos, A. Gelbukh, L. Chanona-

Hernández, “Syntactic Dependency-Based N-grams: More Evidence of

Usefulness in Classification,” LNCS, 7816 (Proc. of CICLing), pp. 13–

24 (2013)

[10] G. Sidorov, F. Velasquez, E. Stamatatos, A. Gelbukh, L. Chanona-

Hernández, “Syntactic N-grams as Machine Learning Features for

Natural Language Processing,” Expert Systems with Applications, in

press, 8 p., 2013.

[11] H. Calvo, J.O. Juarez Gambino, A. Gelbukh, K. Inui. “Dependency

Syntax Analysis using Grammar Induction and a Lexical Categories

Precedence System,” Proc. of CICLing 2011, Lecture Notes in

Computer Science, N 6608, pp. 109–120 , 2011.

[12] M. Khalilov, J.A.R. Fonollosa, “N-gram-based Statistical Machine

Translation versus Syntax Augmented Machine Translation:

comparison and system combination,” Proceedings of the 12th

Conference of the European Chapter of the ACL, pp. 424–432, 2009.

[13] N. Habash, “The Use of a Structural N-gram Language Model in

Generation-Heavy Hybrid Machine Translation,” LNCS, 3123, pp. 61–

69, 2004.

[14] A. Agarwal, F. Biads, K.R. McKeown, “Contextual Phrase-Level

Polarity Analysis using Lexical Affect Scoring and Syntactic N-grams,”

77 Polibits (48) 2013ISSN 1870-9044

N-gramas sintácticos no-continuos

Proceedings of the 12th Conference of the European Chapter of the ACL

(EACL), pp. 24–32, 2009.

[15] A. Gelbukh. “Syntactic disambiguation with weighted extended

subcategorization frames,” Proc. PACLING-99, Pacific Association for

Computational Linguistics, Waterloo, Canada, August 25–28, pp. 244–

249, 1999.

[16] A. Gelbukh, I. Bolshakov, S. Galicia-Haro. “Statistics of parsing errors

can help syntactic disambiguation,” Proc. CIC-98, Simposium

Internacional de Computación, November 11–13, Mexico City, pp.

405–515, 1998.

[17] S. Pado y M. Lapata, “Dependency-based construction of semantic

space models,” Computational Linguistics, 33(2), pp. 161–199, 2007.

[18] A. Gelbukh. “Natural language processing: Perspective of CIC-IPN,”

International Conference on Advances in Computing, Communications

and Informatics (ICACCI 2013), IEEE Conference Publications, pp.

2112–2121, 2013.

[19] S.N. Galicia-Haro, A. Gelbukh, I.A. Bolshakov. “Acquiring syntactic

information for a government pattern dictionary from large text

corpora,” IEEE International Workshop on Natural Language

Processing and Knowledge Engineering, NLPKE 2001 at International

IEEE SMC-2001 Conference: Systems, Man, and Cybernetics. Tucson,

USA, October 7–10, IEEE, pp. 536–542, 2001.

[20] A. Gelbukh, I. Bolshakov, S. Galicia Haro. “Automatic Learning of a

Syntactical Government Patterns Dictionary from Web-Retrieved

Texts,” Proc. International Conference on Automatic Learning and

Discovery, Carnegie Mellon University, Pittsburgh, PA, USA, June 11–

13, pp. 261–267, 1998.

[21] M. Koppel, J. Schler, S. Argamon, “Authorship attribution in the wild,”

Language Resources and Evaluation 45(1), pp. 83–94, 2011.

[22] X. Carreras, I. Chao, L. Padró, M. Padró, “FreeLing: An Open-Source

Suite of Language Analyzers,” Proceedings of the 4th International

Conference on Language Resources and Evaluation (LREC'04), 2004.

[23] L. Padró, E. Stanilovsky, “FreeLing 3.0: Towards Wider

Multilinguality,” Proceedings of the Language Resources and

Evaluation Conference (LREC 2012), ELRA, Turkey, 2012.

[24] M.C. de Marneffe, B. MacCartney, C.D. Manning, “Generating Typed

Dependency Parses from Phrase Structure Parses,” Proc. of LREC,

2006.

[25] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten,

“The WEKA Data Mining Software: An Update,” SIGKDD

Explorations, 11(1), 2009.

78Polibits (48) 2013 ISSN 1870-9044

Grigori Sidorov

More Effective Boilerplate
Removal—the GoldMiner Algorithm

István Endrédy, Attila Novák

Abstract—The ever-increasing web is an important source for
building large-scale corpora. However, dynamically generated
web pages often contain much irrelevant and duplicated text,
which impairs the quality of the corpus. To ensure the high
quality of web-based corpora, a good boilerplate removal
algorithm is needed to extract only the relevant content
from web pages. In this article, we present an automatic
text extraction procedure, GoldMiner, which by enhancing a
previously published boilerplate removal algorithm, minimizes
the occurrence of irrelevant duplicated content in corpora,
and keeps the text more coherent than previous tools. The
algorithm exploits similarities in the HTML structure of pages
coming from the same domain. A new evaluation document set
(CleanPortalEval) is also presented, which can demonstrate the
power of boilerplate removal algorithms for web portal pages.

Index Terms—Corpus building, boilerplate removal, the web
as corpus.

I. THE TASK

WHEN constructing corpora from web content, the
extraction of relevant text from dynamically generated

HTML pages is not a trivial task due to the great amount of
irrelevant repeated text that needs to be identified and removed
so that it does not compromise the quality of the corpus. This
task, called boilerplate removal in the literature, consists of
categorizing HTML content as valuable vs. irrelevant, filtering
out menus, headers and footers, advertisements, and structure
repeated on many pages.

In this paper, we present a boilerplate removal algorithm
that removes irrelevant content from crawled content more
effectively than previous tools. The structure of our paper is as
follows. First, we present some tools that we used as baselines
when evaluating the performance of our system. The algorithm
implemented in one of these tools, jusText, is also used as
part of our enhanced boilerplate removal algorithm. This is
followed by the presentation of the enhanced system, called
GoldMiner, and the evaluation of the results.

II. EXISTING TOOLS

In this section, some relevant boilerplate removal algorithms
are reviewed, which are freely accessible and thus could be
used as evaluation baselines. They contain good ideas, and

Manuscript received on July 31, 2013; accepted for publication on
September 30, 2013.

The authors are with the MTA-PPKE Language Technology Research
Group and Pázmány Péter Catholic University, Faculty of Information
Technology and Bionics, 50/a Práter street, 1083 Budapest, Hungary (e-mail:
{endredy.istvan.gergely, novak.attila}@itk.ppke.hu).

the path of these good ideas are outlined in the following
overview: methods often built on the result of the previous
ones. We reimplemented some of these algorithms in C++, so
that they can be evaluated in a fast and comfortable way.

A. The Body Text Extraction (BTE) Algorithm

The basic insights underlying the BTE algorithm [1] are the
following:

1) the relevant part of the HTML content is usually a
contiguous stretch,

2) the density of HTML tags is lower in it than in
boilerplate content.

Based on these two assumptions, the algorithm performs
a search for the longest stretch of text in which the number
of intervening tags is minimal. The idea is simple, but the
result is often wrong with the algorithm failing to extract the
most relevant part of the content in situations where, contrary
to the tag density assumption, it contains a segment with a
higher tag-to-text ratio. This occurs, for example, if tables are
included or advertisements interrupt the article. In this case, a
significant part of the valuable content (or the whole) may be
lost or replaced by entirely irrelevant content.

B. The Boilerpipe Algorithm

A merit of the boilerpipe [2] algorithm is that its authors
demonstrated experimentally that boilerplate content can be
identified effectively by using a good combination of simple
text properties. They used an annotated training corpus of 500
documents (mainly Google news) to find the most effective
feature combination. They tried to extract articles with the
help of shallow text features, using 8-10 different feature
combinations, and then they evaluated their results. In their
experiments, a combination of word and link density features
gave the best results (its F-measure was: 92%). Furthermore,
the method is very fast and it needs no preprocessing. Both
the training set and the tool can be downloaded.

C. The jusText Algorithm

The jusText algorithm [3] splits HTML content into
paragraphs at block-level tags that are generally used to
partition HTML content into logical units, such as <p>, <td>,
<h1> etc. Using various features of these blocks of text
such as the number of links (an idea from boilerpipe [2]),
words and stopwords, the algorithm performs a rule-based

79 Polibits (48) 2013ISSN 1870-9044; pp. 79–83

classification of the blocks using various thresholds and a
language-dependent list of function words tagging each unit
‘good’, ‘almost good’, ‘bad’, or ‘too short’. The latter tag
applies to units too short to categorize reliably. After initial
classification, ‘almost good’ and ‘too short’ units surrounded
by ‘good’ ones are reclassified as ‘good’. The text to be
extracted consists of all units classified as ‘good’ in the final
classification. The algorithm performs quite well even for
extreme pages.

However, inspection of the corpus generated by using the
jusText algorithm to filter crawled news portals revealed that
many expressions that obviously come from a single article
and should not occur more than once, like The feeding-bottle
is a potential source of hazard, were still extremely strongly
over-represented. Examples in Table I are from a corpus
crawled from Hungarian news portals applying jusText as a
boilerplate removal tool.

TABLE I
EXAMPLES OF PHRASES OVERREPRESENTED DUE TO INADEQUATE

BOILERPLATE REMOVAL

Phrase Occurr.
Utasi Árpi-szerű mesemondó. 10,587
‘Utasi Árpi-like storyteller.’
A cumisüveg potenciális veszélyforrás. 1,578
‘The feeding-bottle is a potential
source of hazard.’
Obama amerikai elnök, 292
‘U.S. President Obama,’
etióp atléta: cseh jobbhátvéd 39,328
‘Ethiopian athlete: Czech right-back’
Barack Obama amerikai elnök 2,372
‘U.S. President Barack Obama’
George Bush amerikai elnök 1,626
‘U.S. President George Bush’

We found that the problem is caused primarily by jusText
failing to eliminate leads of related and recommended articles
and content coming from index pages containing only article
headlines and leads. Leads and headlines of the set of
current articles advertised on every article body page during
the limited time span of the crawl were thus strongly
overrepresented in the corpus.

D. JusText + Onion

JusText [3] was complemented with a post processing tool,
called Onion (ONe Instance ONly), which is for removing
near-duplicate paragraphs from the corpus. It generates a hash
code for each sentence (n-gram of words), and only the
first occurrence in the corpus is kept, others are dropped. It
can be parametrized to drop whole documents or paragraphs
containing duplicated parts. This method effectively decreases
the ratio of duplicated content in the corpus, but it often
decreases the coherence of the individual texts: they will not
be continuous text any more: some parts may be missing from
them.

Whether this is a problem or not depends on the aim of
the corpus to be gathered. If the goal is just to have a huge

collection of sentences, then the available algorithms may
perform well enough, the best choice being most probably the
jusText+Onion combo. But if it is considered a problem that
the title and the lead of an article might be missing while it is
attached to just another recent article, i.e. if the coherence of
the text is important, then a new approach seems to be needed.

E. CleanEval

CleanEval [4] was a boilerplate remover competition held in
2007. The gold standard corpus used at that competition with a
test set of 684 documents is available. The performance of new
algorithms on this corpus can be evaluated using an improved
evaluation script created by Evert [5]: it calculates precision,
recall, F-score, true and false positives and negatives, etc. for
the output of a given algorithm. This makes comparison to
previously published tools possible.

The documents in the CleanEval corpus were prepared
from English and Chinese web pages, which were selected at
random: Google results for the following words were retrieved:
picture, extents, raised, events. Annotators were asked to
remove the boilerplate, and to identify the structure of the
article (title, paragraphs, lists: using the h, p, l tags). This
manually cleaned-up corpus is used as gold standard. The
evaluation is based on Levenshtein edit distance [6], adapted
by substituting ‘token’ for ‘character’. The calculated edit
distance between each pair of cleaned files is divided by the
file length: i.e. the percentage of all tokens from either of the
two files that cannot be matched with a token in the other file.

III. THE GOLDMINER ALGORITHM

The problem of boilerplate removal from web pages
generated by portal engines can be solved more efficiently if
we step up to a level higher than that of individual web pages.
As our first attempts at defining a good general procedure for
identifying unwanted parts of pages were less successful than
expected, we decided to take an optimistic stance and look for
what is good instead of what is bad.

We based our approach on the following observations:
1) The relevant part of the HTML content is usually a

contiguous stretch (see the BTE approach).
2) Within a web domain/subdomain, the internal structure

(the HTML code) of dynamically generated pages
generally contains common patterns that can help us
identify relevant content.

The algorithm takes a sample of the pages of the
domain/subdomain and tries to locate the common patterns in
the HTML code within the sample that identify the beginning
and the end of valuable content. For example, news portals
typically advertise recent and related articles by displaying
their headlines and leads next to the actual article. Although
this usually seems to be relevant content to jusText, it is in fact
just boilerplate content, like menus or advertisements, which
has little or nothing to do with the actual article. Not filtering
them out results in thousands of duplicates in the corpus.

80Polibits (48) 2013 ISSN 1870-9044

István Endrédy, Attila Novák

Fig. 1. An example HTML content with unique and not unique paragraphs

Although, as we have seen, post-crawl de-duplication tools,
like Onion, can remedy this situation by removing duplicate
content, nothing guarantees, however, either that the only
remaining instance of the duplicate content is the one that
is at the right place or that all duplicates should be removed.

The algorithm learns the HTML tags identifying the
beginning and the end of the article for each web
domain/subdomain, and only content within this stretch of the
page is kept. In addition, since it may still be the case that
the body of the article is interrupted with advertisements or
other boilerplate content at several points, it is submitted for
further processing to the jusText boilerplate removal algorithm.
An advantage of this solution is that text from pages with
no article content (thematic index pages, tag clouds, search
page results, etc.) will not be added to the corpus since the
domain-specific HTML tag pattern is not present on them. The
algorithm automatically discards the contents of these pages.
However, all pages are, of course, still used as a source of
URLs for the crawl.

A. A Detailed Description of the Algorithm

The first phase of the crawl of a domain is taking a
sample, which is used to identify the domain-specific HTML
tag pattern. The algorithm downloads a sample of some 100
pages, applying jusText categorization to each page, which

breaks content into paragraphs and evaluates them. Repetitions
of individual extracted paragraphs (identified as ‘good’ by
jusText) over different pages in the sample are identified by
the GoldMiner algorithm, and these paragraphs are reclassified
as bad. Unique paragraphs remain classified as ‘good’. Next,
it finds the nearest common parent HTML tag of the good
paragraphs in the DOM hierarchy on each page. At the end
of the learning phase, the most frequent common good parent
tag is identified as the winner.

We do not usually get optimal results, however, if the
closing tag pair of this parent tag is simply chosen as the tag
marking the end of the article. The span enclosed by the parent
tag pair may contain bad paragraphs, too. In this case, the
algorithm would not find the optimal cutting points. Therefore,
it performs another search for the optimal starting and endpoint
within the content of the previously selected tag, which may
be a series of tags. With the selection of the cutting points,
the learning phase for the domain is finished. As the URL
domain is crawled afterwards, only the content between the
domain-specific beginning and endpoint tag patterns is passed
to the jusText boilerplate removal algorithm. Of course, pages
used during the learning phase are also handled this way.

During the learning phase, GoldMiner uses only pages
where the length of the extracted paragraphs reaches a
threshold. Without using a threshold, it failed to learn the

81 Polibits (48) 2013ISSN 1870-9044

More Effective Boilerplate Removal - the GoldMiner Algorithm

optimal cutting points on some domains where thematic
opening pages are more frequent than pages containing
articles.

B. Illustration of the GoldMiner Algorithm

We present an example in Figure 1 to illustrate the
algorithm.

In the learning phase, for every paragraph that was classified
as ‘good’ by JusText, we check if it is unique or not among
all pages downloaded from the same domain during the first
phase of the crawl. Not unique paragraphs are reclassified as
‘bad’. In this example, unique paragraphs are colored green,
while those classified either by jusText as boilerplate or those
occurring on other pages as well are colored red and marked
by small red dotted arrows.

GoldMiner stores html patterns preceding and following
green paragraphs. The fragment preceding the green span in
the example is:

<label class="screen-reader-text"
for="s">Search</label>

<input type="text" value="search"
/></div>

<div id="content" class="hfeed">

The one following it is:

</p>
<div id="jp-post-flair"

class="sharedaddy sd-like-enabled
sd-sharing-enabled">

When the algorithm processed enough pages, it evaluates
the stored patterns: it selects the most frequent uniquely
identifiable pattern preceding and following the article body. In
this example, the best pattern of enclosing tags is highlighted
in blue and marked by bigger solid arrows. The configuration
information learned for the given subdomain contains these
html patterns. The html content of every page is trimmed using
these patterns, only the content between the tags matching the
patterns will be processed. Thus the otherwise unique content
of comments (it also has green color on the picture as it is
deemed ‘good’ by jusText) will be dropped from this page, it
will not be considered part of the article.

IV. EVALUATION

A. Results and Problems on the CleanEval Corpus

JusText and GoldMiner, with and without Onion post-
filtering were tested on the CleanEval test set. As can be
seen in Table II, Onion post-filtering increases precision
while decreasing recall, which results in net reduction of the
balanced F-score.

GoldMiner tries to learn the structure of pages characteristic
of each (sub)domain, and applies jusText only to the part of
the page that is expected to contain a relevant stretch of text.
When comparing the results of GoldMiner with jusText on the

TABLE II
RESULTS ON CLEANEVAL

F-score Precision Recall
justText 93.61% 95.29% 91.99%
justText+Onion 93.24% 95.51% 91.08%
GoldMiner 93.40% 95.32% 91.55%
GoldMiner+Onion 93.08% 95.49% 90.78%
BoilerPipe 83.49% 95.15% 74.38%
BTE 91.09% 90.50% 91.68%

TABLE III
RESULTS ON CLEANPORTALEVAL

F-score Precision Recall
justText 87.26% 78.82% 97.72%
justText+Onion 91.16% 86.48% 96.38%
GoldMiner 98.32% 98.50% 98.15%
GoldMiner+Onion 97.77% 98.48% 97.07%
BoilerPipe 90.68% 92.91% 88.56%
BTE 81.63% 71.20% 95.64%

CleanEval corpus, we do not get consistent improvement. This
is not surprising, though, since this corpus does not contain
more than just 3 to 4 pages from each domain, thus GoldMiner
has no chance to learn anything relevant about the structure
of the pages.

It is worth mentioning that the corpus contains many torso
articles after post-filtering with Onion: Onion often deletes
paragraphs from the middle of the text. This often occurs with
stereotypical sentences that occur many times in the corpus,
like Good Morning! etc., and the text is fragmented without
them. For example 127.txt in the CleanEval gold standard test
set has this text:

<h>An open letter to KPLU
<p>To whom it may concern,
<p>Your radio feature by Kirsten

Kendrick...

JusText keeps these paragraphs, but after post-filtering with
Onion it looks like this:

<h>An open letter to KPLU
<p>Your radio feature by Kirsten

Kendrick

The salutation, “To whom it may concern,” is missing. If
we want to build a coherent text, not just a collection of
independent sentences, the post-filtering performed by Onion
may yield suboptimal results.

Moreover, the CleanEval gold standard sometimes does
contain boilerplate (e.g. in 634.txt, the last <p> item) or
broken words (e.g. 100-102.txt).1 This, and the wish to
demonstrate the power of GoldMiner inspired us to create
a new evaluation set: CleanPortalEval, which contains more
homogeneous sets of pages.

1Serge Sharoff’s reaction (p. c.) to calling his attention to this fact: “Nobody
is perfect.”

82Polibits (48) 2013 ISSN 1870-9044

István Endrédy, Attila Novák

TABLE IV
RESULTS ON 2 000 PAGES FROM VARIOUS NEWS PORTALS

Domain Algorithm Sentences Uniq. snt. % Characters Chr. in uniq. %
origo.hu BTE 60 682 33 269 54% 12 016 560 7 499 307 62%

jusText 58 670 30 168 51% 8 425 059 4 901 528 58%
GMiner 22 475 21 242 94% 3 076 288 3 051 376 99%

nol.hu BTE 154 547 107 573 69% 24 292 755 13 544 130 55%
jusText 186 727 128 782 68% 14 167 718 11 665 284 82%
GMiner 162 674 123 716 76% 12 326 113 11 078 914 89%

index.hu BTE 51 713 26 176 50% 5 756 176 4 061 697 70%
jusText 40 970 29 223 71% 4 371 693 3 441 337 78%
GMiner 13 062 11 887 91% 1 533 957 1 489 131 97%

V. CLEANPORTALEVAL

The wish to demonstrate that the approach implemented in
GoldMiner is superior to a post-filtering approach for the task
of extracting whole articles with minimally compromising the
integrity of the texts prompted us to create a new gold standard
document set. It contains several pages from the same domain
(70 pages from 4 domains), thus it can be used to test the
ability of various algorithms to clean pages generated by portal
engines. Annotation in this gold standard corpus is similar to
that of CleanEval: the output text is annotated using p, h,
and l tags by human annotators. The CleanEval evaluation
script can be applied to this test set without any changes (the
corpus can be downloaded from https://github.com/
ppke-nlpg/CleanPortalEval). The algorithms were
tested on this document set, which yielded the following
results, shown in Table III.

Note that, when testing on an appropriate test set that
contains enough pages with similar structure, GoldMiner
clearly outperforms its rivals both in terms of precision and
recall. Applying Onion post-filtering to the GoldMiner output
decreases not only recall but also precision in this case (test
results can be downloaded from https://github.com/
ppke-nlpg/boilerplateResults).

VI. RESULTS ON SOME PORTALS

Table IV shows the results of the GoldMiner algorithm
compared with that of BTE and jusText on three Hungarian
news portals: origo.hu, index.hu, nol.hu. The sample corpora
quoted in Table IV were generated crawling just the first 2 000
pages from the domains above. Using GoldMiner, the ratio of
duplicates in the corpus was reduced considerably compared
to what other algorithms produced.

The results clearly show that the algorithm effectively
reduces unnecessary duplication in these crawled corpora.
Having not revised these pages manually, however, we have
no estimate of how the different algorithms perform in terms
of the amount/ratio of lost relevant content for these domains.

VII. CONCLUSION

In this paper, a new boilerplate removal algorithm,
GoldMiner, was presented, which can eliminate boilerplate

content from dynamically generated web pages in a more
efficient way than similar available tools: it identifies recurring
HTML tag patterns around relevant content characteristic of
web pages coming from a given domain/subdomain. The
algorithm preserves textual coherence better than the usual
post-filtering de-duplication approach.

A new test document set was created to demonstrate
its performance: previous gold standard corpora did not
contain enough pages from the same domain for the approach
to be applicable. The new gold standard set is called
CleanPortalEval and it is open to the public.

ACKNOWLEDGMENTS

This research was partially supported by the project grants
TÁMOP–4.2.1./B–11/2-KMR-2011-0002 and TÁMOP–4.2.2./
B–10/1-2010-0014.

REFERENCES

[1] A. Finn, N. Kushmerick, and B. Smyth, “Fact or fiction: Content
classification for digital libraries,” in DELOS Workshop: Personalisation
and Recommender Systems in Digital Libraries, 2001.

[2] C. Kohlschütter, P. Fankhauser, and W. Nejdl, “Boilerplate detection
using shallow text features,” in Proceedings of the third ACM
international conference on Web search and data mining, ser. WSDM
’10. New York, NY, USA: ACM, 2010, pp. 441–450. [Online].
Available: http://doi.acm.org/10.1145/1718487.1718542

[3] J. Pomikálek, “Removing boilerplate and duplicate content from web
corpora [online],” Ph.D. dissertation, Masarykova univerzita, Fakulta
informatiky, 2011.

[4] M. Baroni, F. Chantree, A. Kilgarriff, and S. Sharoff, “Cleaneval:
A competition for cleaning web pages,” in Proceedings of the
Sixth International Conference on Language Resources and Evaluation
(LREC’08), B. M. Nicoletta Calzolari, Khalid Choukri and D. Tapias,
Eds. Marrakech, Morocco: European Language Resources Association
(ELRA), 2008.

[5] S. Evert, “A lightweight and efficient tool for cleaning web pages,” in
Proceedings of the Sixth International Conference on Language Resources
and Evaluation (LREC’08), B. M. Nicoletta Calzolari, Khalid Choukri
and D. Tapias, Eds. Marrakech, Morocco: European Language Resources
Association (ELRA), 2008.

[6] V. Levenshtein, “Binary codes capable of correcting deletions, insertions,
and reversals,” Cybernetics and Control Theory, vol. 10, no. 8, pp. 707–
710, 1966, original in Doklady Akademii Nauk SSSR 163(4): 845–848
(1965).

83 Polibits (48) 2013ISSN 1870-9044

More Effective Boilerplate Removal - the GoldMiner Algorithm

I. JOURNAL INFORMATION

Polibits is a half-yearly open-access research journal

published since 1989 by the Centro de Innovación y

Desarrollo Tecnológico en Cómputo (CIDETEC: Center of

Innovation and Technological Development in Computing) of

the Instituto Politécnico Nacional (IPN: National Polytechnic

Institute), Mexico City, Mexico.

The journal has double-blind review procedure. It publishes

papers in English and Spanish (with abstract in English).

Publication has no cost for the authors.

A. Main Topics of Interest

The journal publishes research papers in all areas of

computer science and computer engineering, with emphasis on

applied research. The main topics of interest include, but are

not limited to, the following:

 Artificial Intelligence

 Natural Language

Processing

 Fuzzy Logic

 Computer Vision

 Multiagent Systems

 Bioinformatics

 Neural Networks

 Evolutionary Algorithms

 Knowledge

Representation

 Expert Systems

 Intelligent Interfaces

 Multimedia and Virtual

Reality

 Machine Learning

 Pattern Recognition

 Intelligent Tutoring

Systems

 Semantic Web

 Robotics

 Geo-processing

 Database Systems

 Data Mining

 Software Engineering

 Web Design

 Compilers

 Formal Languages

 Operating Systems

 Distributed Systems

 Parallelism

 Real Time Systems

 Algorithm Theory

 Scientific Computing

 High-Performance

Computing

 Networks and

Connectivity

 Cryptography

 Informatics Security

 Digital Systems Design

 Digital Signal Processing

 Control Systems

 Virtual Instrumentation

 Computer Architectures

B. Indexing

The journal is listed in the list of excellence of the

CONACYT (Mexican Ministry of Science) and indexed in the

following international indices: LatIndex, SciELO, Periódica,

e-revistas, and Cabell’s Directories.

There are currently only two Mexican computer science

journals recognized by the CONACYT in its list of

excellence, Polibits being one of them.

II. INSTRUCTIONS FOR AUTHORS

A. Submission

Papers ready for peer review are received through the Web

submission system on www.easychair.org/conferences/?conf=

polibits1; see also updated information on the web page of the

journal, www.cidetec.ipn.mx/polibits.

The papers can be written in English or Spanish. In case of

Spanish, author names, abstract, and keywords must be

provided in both Spanish and English; in recent issues of the

journal you can find examples of how they are formatted.

Only full papers are reviewed; abstracts are not considered

as submissions. The review procedure is double-blind.

Therefore, papers should be submitted without names and

affiliations of the authors and without any other data that

reveal the authors’ identity.

For review, a PDF file is to be submitted. In case of

acceptance, the authors will need to upload the source code of

the paper, either Microsoft Word or LaTeX with all

supplementary files necessary for compilation. Upon

acceptance notification the authors receive further instructions

on uploading the camera-ready source files.

Papers can be submitted at any moment; if accepted, the

paper will be scheduled for inclusion in one of forthcoming

issues, according to availability and the size of backlog. While

we make every reasonable effort for fast review and

publication, we cannot guarantee any specific time for this.

B. Format

The papers should be submitted in the format of the IEEE

Transactions 8x11 2-column format, see http://www.ieee.org/

publications standards/publications/authors/author_templates.

html. (while the journal uses this format for submissions, it is

in no way affiliated with, or endorsed by, IEEE). The actual

publication format differs from the one mentioned above; the

papers will be adjusted by the editorial team.

There is no specific page limit: we welcome both short and

long papers, provided that the quality and novelty of the paper

adequately justifies its length. Usually the papers are between

10 and 20 pages; much shorter papers often do not offer

sufficient detail to justify publication.

The editors keep the right to copyedit or modify the format

and style of the final version of the paper if necessary.

Journal Information and Instructions for Authors

85 Polibits (48) 2013ISSN 1870-9044

